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I. Introduction to Supervised

Learning & Neural Networks



What is Supervised Learning

• Given a set of n training examples

{(x1, y1), ..., (xn, yn)} ∼ D.

• Assumption: there exists a mapping

f matching any vector to its label.

�� ��Learning algorithm goal: Approximate f by a parametrized function fθ.
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Supervised Learning Algorithms

• To measure how well fθ fits f , we

use a loss function ` : Y ×Y → R+.

• Find the parameter θ that minimizes

the generalization error�� ��E(x,y)∼D [` (y , fθ (x))]

The standard method to find θ is the empirical risk minimization (ERM):

θ̂ERM := argminθ∈Θ

[
1

n

n∑
i=1

` (yi , fθ (xi ))

]
recall: yi = f (xi )
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Neural networks

A neural network is a directed and weighted graph, modeling the structure of

a dynamic system. A neural network is analytically described by list of

function compositions.

�

�

�

�

A Feed forward neural network of N layers is defined as follows:

F := fθ̂ERM = φ(N) ◦ φ(N−1) ◦ · · · ◦ φ(1)(x)

Where for any i , φ(i) := z 7→ σ(Wiz +bi ), bi ∈ Rm, Wi ∈MR(m, n)

(n size of z), and σ some non linear (activation) function.

Feed forward networks, as well as some other specific types of network are

said to be universal approximators [Cybenko, 1989].
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Deep neural networks

Deep neural networks (large and complex networks) has recently proven

outstanding results especially in image classification.

No free lunch:

1) (Deep) Neural networks lack theoretical guarantees.

2) The model is often over-parametrized, which can lead to over-fitting, or

to other flaws in the classification task (e.g adversarial examples).
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Adversarial example attacks



Intriguing properties of neural networks

An adversarial attack refers to a small, imperceptible change of an input

maliciously designed to fool the result of a machine learning algorithm.

Since the seminal work of [Biggio et al., 2013] exhibiting this intriguing

phenomenon in the context of deep learning, numerous attack methods have

been designed (e.g. [Papernot et al., 2016, Carlini and Wagner, 2017]).
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Crafting an adversarial attack

Let X and Y be respectively the image and the label spaces. Let us also

consider (x , y) a labeled image. To craft the adversarial example:

• The adversary should solve min
F (x+τ) 6=y

||τ || which is hard.

• This is relaxed to min c||τ || − `(y ,F (x + τ)) with c > 0.

• One can simply take xadv = x + γ ∇x `(y,F (x+τ))
||∇x `(y,F (x+τ))|| (small enough γ).

This very simple attack make the classifier’s accuracy drop drastically.

Some (not much) more sophisticated attacks make the accuracy drop to 0%.
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Geometric interpretation

Adversarial example: Neural networks do not preserve distances between

images. Adversaries take advantage of it to find adversarial examples.

How to defend? A learning algorithm should be robust to adversarial

examples, if it has a local (small ball around each image) isometric property.
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Defense methods & randomization



Current state-of-the-art: Adversarial training

• At every step of the learning procedure, for each image, augment the

batch with corresponding adversarial example (see [Madry et al., 2018]).

• Gives an ’ok’ defense against adversarial examples (here CIFAR10).

• Adversarial training is computationally costly.

• Provides no theoretical analysis, hence no worst case behavior.

Attack Steps Madry et al.

- - 0.873

`∞ – PGD 20 0.456

`2 – C&W 30 0.468
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An other technique: randomization

• Randomization is massively studied in a lot of domains.

• Provides theoretical background/rationale of the defense mechanism.

• In some cases, it provides theoretical results on the worst case scenario.

• In some cases, it can be computationally efficient.
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Interpretation randomization

Several possible interpretations and techniques:

• Robust optimization: Noise helps locally

smoothing the network.

• Data augmentation: Noise helps the network

minimize the generalisation error.

• Topological: Change the output space to be

a space of probability distributions.

• Game theory: there is no pure Nash

equilibrium =⇒ one needs a mixed strategy.
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Our point of view: Topological

Recent Works [Li et al., 2019, Cohen et al., 2019, Pinot et al., 2019] propose

to inject noise at a given layer of the network at inference.

Formally: for a Feedforward network, we have

F̃ε(x) = φ
(N)
WN ,bN

◦ · · · ◦ φ̃(i)
Wi ,bi

◦ · · · ◦ φ(1)
W1,b1

(x)

Where φ̃
(i)
Wi ,bi

(z) = σ(Wiz+bi )+ε, ε ∼ N (0,Σ).

Then one can use the expectation over transformations as a robust classifier:

F rob(x) := Eε∼N (0,Σ)

(
F̃ε(x)

)
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Geometrical interpretation

Figure inspired by [Cohen et al., 2019]

• Adding N (0, σ2) to the natural image produces a probability distribution

on the regions P[X ∈ region] with X ∼ N (x , σ2).

• Adding the same noise on xadv produces almost the same distribution.

• Hence F rob(x) and F rob(xadv) should give similar results.

14



Formal validation

From [Cohen et al., 2019]:�
�

�


Let F rob(x) := Eε∼N (0,Σ)

(
F̃ε(x)

)
be the classifier at hand. ∃α∗ > 0

such that, for any ||τ || < α∗ one has F rob(x) = F rob(x + τ)

• Noise injection gives a worst case certificate.

• We [Pinot et al., 2019] extended this work to any exponential family.

• Values of α∗ are still to small for the methods to be fully robust.
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Some numerical results
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• Trade-off between robustness to attacks, and accuracy of the method.

• Best attacks remain hard to mitigate.
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Take home message

• Adversarial examples are a burning issue and a big security breach.

• Randomization presents principled advantages over other defenses.

• Overall defense capabilities remain weak.

• Room for improvement both theoretically (bigger α∗) and experimentally

(try more distributions, and more sophisticated randomized settings).
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