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Motivation



Our original motivation: A problem at Aristas SRL

Problem

• Clustering of high dimensional chemical formulas

Data size

• 106 formulas
• Dimension d ∼ 4000

Clustering in high-dimensional spaces is usually very difficult

and Euclidian or ad-hoc distances might be misleading...
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A curse of dimensionality

Bad news

Let ωD(r) = ωD(1)rD be the volume of the ball of radius r in RD.

ωD(1)− ωD(1− ε)
ωD(1) = 1− (1− ε)D D→∞−−−−→ 1

In high dimensional Euclidean spaces every two points of a
typical large set are at similar distance.
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Manifold hope

Good news: many structured data live in a manifold of dimension
much lower than ambient space (d� D).
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Motivation: MNIST Dataset

van der Maaten, L.J.P.; Hinton, G.E. (Nov 2008). Visualizing Data Using t-SNE. Journal of
Machine Learning Research. 9: 2579–2605.
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Dimension reduction and distances

• In most unsupervised learning tasks, a notion of similarity
between data points is both crucial and usually not directly
available as an input.

• The efficiency of tasks like dimensionality reduction and
clustering might crucially depend on the distance chosen.

• Since the data lies in an (unknown) lower dimensional surface,
this distance has to be inferred from the data itself.

• Delicate game between dimensionality reduction, choice of the
distance and clustering...
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Dimension reduction and distance
learning techniques



Dimensionality reduction and distance learning

There are many techniques to address dimensionality reduction and
possibly finding distances in lower dimensional spaces:

• Principal components analysis (PCA),
• Multidimensional scaling (MDS),
• t-Stochastic neighbor embbeding (t-SNE),
• Isomap and variants.
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Distance learning

• Isomap and variants.



Dimensionality Reduction/distance learning: Isomap

Constructs the k-nn graph and finds the optimal path. The weight
of an edge is given |qi − qj |.

c©J. B. Tenenbaum, V. de Silva, J. C. Langford, Science (2000).



Isomap

Theorem
Given ε > 0 and δ > 0, for n large enough

P
(

1− ε ≤ dgeodesic(x, y)
dgraph(x, y) ≤ 1 + ε

)
> 1− δ.

[Bernstein, de Silva, Langford, Tenenbaum (2000)].
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Fermat’s distance



The Problem

• Let M ⊆ RD be a d-dimensional surface (we expect d� D).

• Consider n independent points on M with common density
f :M 7→ R≥0.

Can we learn a better notion of distance between points (for
say clustering)?
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Objectives

We look for a distance that takes into account the
underlying manifold M and the underlying density f .



Sample Fermat’s distance

• α ≥ 1 a parameter, X = a discrete set of points q, x, y ∈ X.

DX(p,q) = inf{
K−1∑
j=1
|yi+1 − yi|α : K ≥ 2,

y (y1, . . . ,yK) is a X-path from p to q}.
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Visualisation

http://www.aristas.com.ar/fermat/index.html

http://www.aristas.com.ar/fermat/index.html


Sample to Macroscopic Fermat’s distance

Theorem (Groisman, Jonckheere, Sapienza, 2018+)
Under mild assumptions on f , there exists µ > 0, such that for
x, y ∈M and Xn i.i.d ∼ f we have

lim
n→∞

nβDXn(x, y) = µD(x, y),

almost surely, with β = (α− 1)/d.

D(x, y) = inf
Γ

∫
Γ

1
fβ
.



Fermat’s principle

In optics, the path taken between two points by a ray of light is an
extreme of the functional

Γ 7→
∫
Γ

n, n = refractive index

D(x, y) = inf
Γ

∫
Γ

1
fβ

f−β ∼ n

c©S.Thorgerson - Pink Floyd, The Dark Side of the Moon (1973), Harvest, Capitol.
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Snell’s law, the lifeguard and Fermat’s distance



Heuristics:

r = (q1, . . . , qk) a path∑
|qi+1 − qi|α =

∑
|qi+1 − qi|α−1|qi+1 − qi|

ncd|qi+1 − qi|df(qi) � 1 ⇐⇒ n1/d|qi+1 − qi| � c
1

f(qi)1/d

n(α−1)/d|qi+1 − qi|α−1 � c 1
f(qi)(α−1)/d

inf
r
n(α−1)/d∑ |qi+1 − qi|α � inf

Γ

∫
Γ

1
fβ

d`. �
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Some mathematical insights



Homogeneous Poisson Point Process : Shape theorem

We based our analysis on:

Theorem (Howard and Newman (1997))

Let X a PPP with intensity λ = 1. Then there exists 0 < µ <∞
such that

lim
|q|→∞

DX(0,q)
|q| = µ, almost surely.

Also give bounds on the fluctuations!
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Other previous mathematical results

Sung Jin Hwang, Steven B. Damelin, Alfred O. Hero III,

Shortest Path through Random Points,

The Annals of Applied Probability, 2016, Vol. 26, No. 5, pp
2791-2823.



Algorithmic considerations and generalizations

Restricted Fermat’s distance:

D(α,k)
X (x, y) = inf

r = (q1, . . . , qK)
qi+1 ∈ Nk(qi)

K−1∑
k=1
|qi+1 − qi|α.

Generalization of Isomap and Fermat’s distance.

Proposition [Groisman, Jonckheere, Sapienza, 2018+]: Given
ε > 0, we can choose k = O (log(n/ε)) such that

P
(
D

(k)
Xn

(x, y) = DXn(x, y)
)
> 1− ε.

→ We can reduce the running time from O (n3) to O (n2(logn)2).
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Open theoretical questions

• General proof of convergence for k fixed?
• How to choose α, k ??



Clustering



Clustering

c©scikit-learn developers



Clustering with Fermat K-medoids in the Swiss roll

(a) 2D data (c) Adjusted mutual
information

(e) Adjusted Rand in-
dex

(b) 3D data (d) Accuracy (f) F1 score



Clustering with Fermat t-SNE



MNIST

Performance of Fermat + k-medoids compared to state of the art robust

clustering

Simulations Violeta Roizman and Alfredo Umfurer.



Application in genetics

Fingerprints of cancer by persistent homology,

A. Carpio, L. L. Bonilla, J. C. Mathews, A. R. Tannenbaum,

2019.

• They compute Fermat’s distance between genes’expressions
(dimension 77) (They choose α ∼ 3.)

• They study clusters based on the Fermat distance.
• "These clusters make noticeable the relations between gene
expressions in healthy samples and those in cancerous
samples."



Conclusions

• We have introduced Fermat’s distance and way to estimate it
with a sample.

• It defines a notion of distance between sample points that
takes into account the geometry of the clouds of point,
including possible non-homogeneities.
• We have proved that this estimator in fact approximates

Fermat’s distance, which is a good way to measure distance in
this (general) setting.
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Applications

• Clustering

• Dimensionality reduction
• Density estimation
• Regression
• Any learning task that requires a notion of distance (not
necessarily in Euclidian space) as an input.
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Download

A prototype implementation is available at

http://www.aristas.com.ar/fermat/index.html

http://www.aristas.com.ar/fermat/index.html


• Weighted Geodesic Distance Following Fermat’s Principle
(2018); F. Sapienza, P. Groisman, M. Jonckheere; 6th
International Conference on Learning Representations (ICRL
2018).

• Geodesics in First Passage Percolation and Distance Learning
(2019); P. Groisman, M. Jonckheere, F. Sapienza; submitted



Thanks!
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