Clustering climate scenarios

Matthieu Jonckheere

People and institutions involved

- Yamila Barrera, Aristas
- Ezequiel Smucler, Aristas, University Di Tella
- Agustin Somacal, Aristas
- Alfredo Umfurer, Aristas
- Leonardo Boechi, UBA-CONICET, Aristas,
- Matthieu Jonckheere UBA-CONICET, Aristas
- Dominique Picard, Université Paris Sorbonne
- Vincent Lefieux, RTE

Climate strongly impacts energy consumption.

Identifying different possible climate scenarios can be instrumental to understand how the electric network would respond to variations in the weather.

RTE gets simulated time series of temperatures over a grid of geographical points in France and neighboring areas.

Objectives

- 1. Cluster climate scenarios
- 2. Evaluate and interpret the clustering
- 3. Give representatives and define the notion of quantiles
- 4. Get insights on the dynamics of the scenarios

Objectives

- 1. Cluster climate scenarios
- 2. Evaluate and interpret the clustering
- 3. Give representatives and define the notion of quantiles
- 4. Get insights on the dynamics of the scenarios

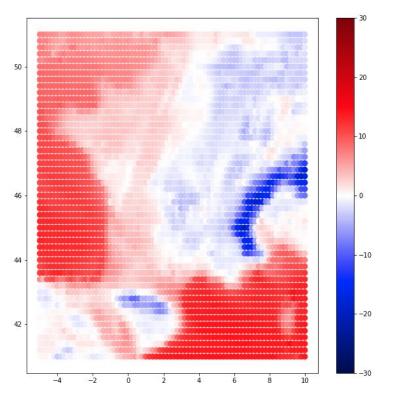
Data

Dimension = 71 x 51 x 8760

For points in a grid of 71 x 51, we have the temperature of every point every for 200 years every hour.

The simulation of 200 years are not forecasts.

They are built to represent the climate of the 1984-2013 period, based on the model Arpege Climat 6.0 and Hirlam reanalysis



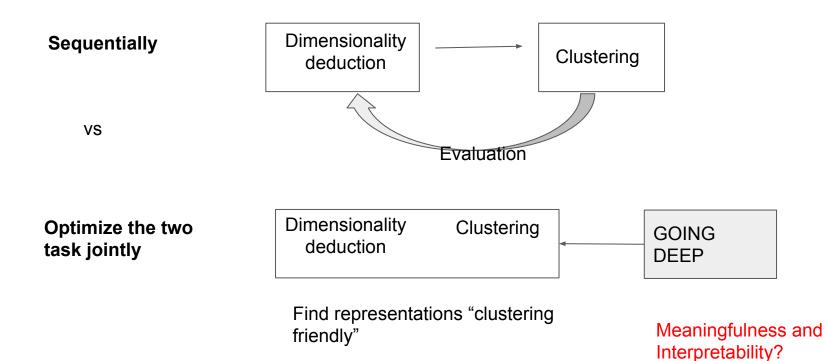
- 1. Choosing a transformation on the data space possibly reducing the dimension, and defining the feature space,
- 2. Choosing a distance on the feature space,
- 3. Choosing a clustering algorithm on the feature space.
- 4. Choosing a distance in the original space and associated criteria to possibly choose between different algorithms using the performances of these criteria.

Clustering tradeoffs

- 1. Choosing a transformation \rightarrow fight dimensionality and concentration of distances
- 2. Choosing a distance on the feature space
 - \rightarrow Right representation for scenarios differences
 - \rightarrow Clustering efficiency

For the clustering to make sense, a non-trivial tradeoff must be found between distance information, dimensionality reduction and clustering efficiency

Towards Deep Clustering



9

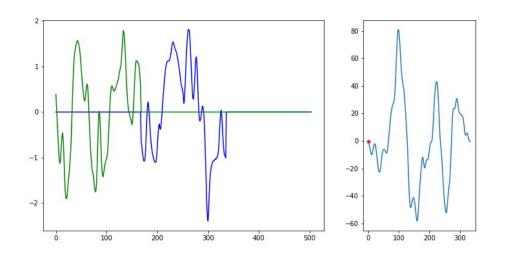
Highlights

- 1. Choice of the distance/transformation
- 2. Time vs space
- 3. Definition of a clustering index

Distances/transformations

Dimension reduction	Distance
Fourier Wavelets	L2
PCA kernel PCA	MLCC
Embeddings (autoencoder)	DTW

Max Lagged Cross Correlation

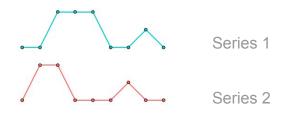


The Max Lagged Cross Correlation (Max CC) distance looks for an optimal alignment between two signals, with the two series only being allowed to be aligned via shifts in the time axis.

[Paparrizos and Gravano 2016]

Max CC takes into account the dynamic nature of the data, the fact that we are dealing with time series, which by their very definition can have **lagged** relations.

Dynamic Time Warping

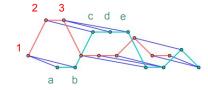


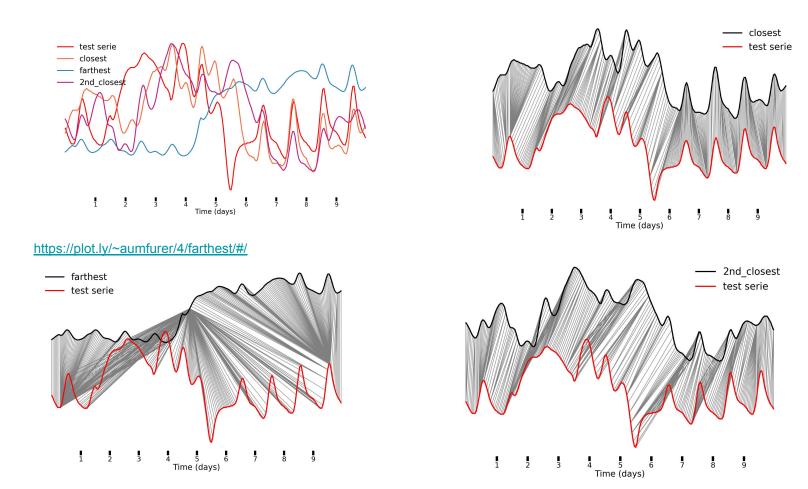
Dynamic Time Warping (DTW) looks for the optimal alignment between two time series. Like the Max Lagged CC Distance, DTW takes into account the dynamic nature of the data. Unlike Max Lagged CC Distance, DTW allows for non-linear alignments of the series and is more computationally demanding.

[Berndt and Clifford 1994]

Euclidean

DTW





Example 1:

Transformation: wavelet basis + thresholding Distance in feature space: L2 between the selected coefficients Cost of dimension reduction: cost of reconstruction Clustering: k-medoids

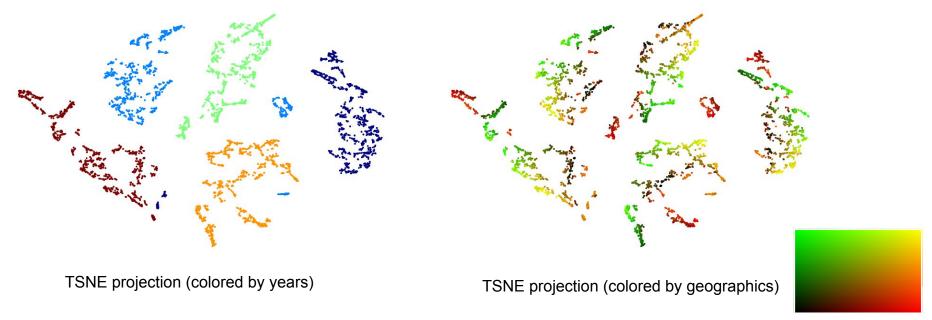
Example 2:

Transformation: none Distance: DTW Cost of dimension reduction: none Clustering: k-medoids Depending on the distance (filtering / dimension reduction) chosen, the **variability** of the data might be dominated either:

- by spatial characteristics (close points in space look alike)
- by time characteristics (series of the same year look alike)

Autoencoders

Embeddings of series of 100 geographical points for 5 scenarios



color code

Variability among years is stronger than among geographical points.

Data

Select the temperature series of a geographical point and a year (reference series) and consider:

- (a) The temperature series corresponding to the same geographical point in all the others scenarios (198 series)
- (b) The temperature series corresponding **to the same year but other geographical points** (we set the number of geo points to be the same as scenarios: 198, although the number of geo points is around 3500)

Goal

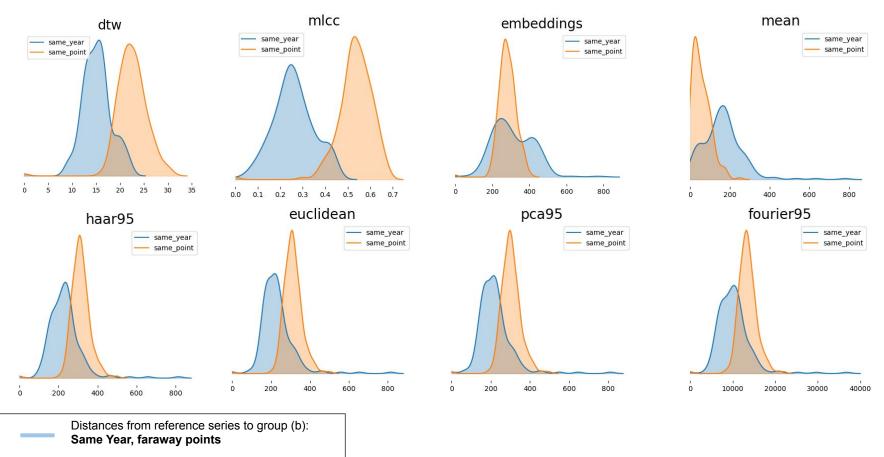
We want to compare:

the distribution of distances between the reference series and the series in group (a)

versus

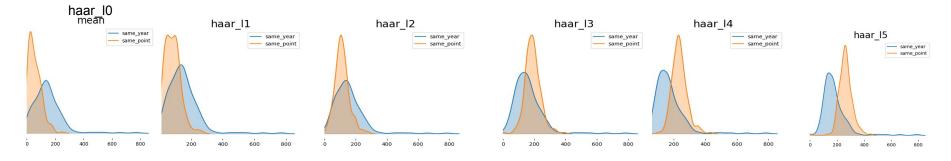
the distribution of distances between the reference series and the series in group (b)

Results

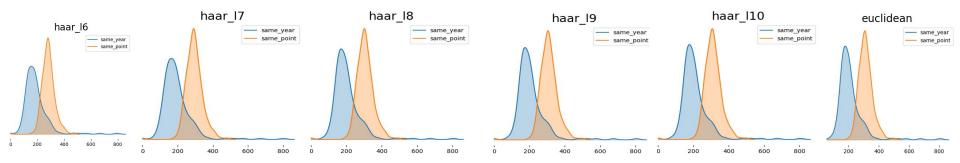


Distances from reference series to group (a): **One Point, different years**

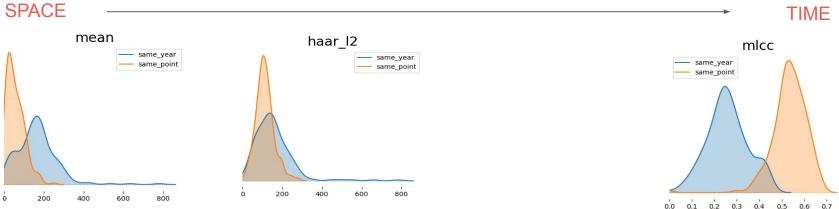
Transition from mean to euclidean by Haar decomposition (series without z-normalization) (Point near Alpes- year 2127)



haar_l11



Phase transition for distances



Suppose we can choose among a certain family of well chosen distances.

Given a subset of scenarios (for instance winters of given point), how to optimize the clustering efficiency without loosing meaningfulness?

Clustering index

We propose a clustering index that helps to select a metric/dimension reduction

For d a given "metric":

Index(d) = F(d) * Q(d)

F stands for fidelity and Q for cluster quality

We decide to use one minus within index as a measure of the quality of the clusters. That is :

Q(d) = 1 - within index (d)

Notice that $0 \le$ within index ≤ 1 and therefore $0 \le Q(d) \le 1$. The best within index is 0 and so the best Q(d) is 1.

Within Index: Ratio between the average distance from each point to its center and the average distance between points. 2 / 2

Within index (d) =
$$\frac{\sum_{i} d(x_{i}, c_{x_{i}})^{2} / n}{\sum_{i < j} d(x_{i}, x_{j})^{2} / (n \times (n+1)/2)}$$

where $\{x_i\}_i$ are the data points, n is the number of data points and C_{x_i} is the center of the cluster associated to \mathcal{X}_i

! This index benefits k-means over k-medoids.

How to construct a measure of deformation from the original space with distance D to the feature space with distance d?

We want an index that gives 1 to 0 deformation and 0 to huge deformations. (We do not have necessarily a notion of reconstruction or decoder)

In order to be able to evaluate the fidelity of the representation of the data, a reference metric D is set. We want to evaluate how well the distances d preserve D.

We use the T-SNE Stochastic embedding for the original space and feature space:

$$p_{j|i} = \frac{\exp(-D(x_i, x_j)^2 / 2\sigma_i^2)}{\sum_{k \neq l} \exp(-D(x_i, h_k)^2 / 2\sigma_i^2)} \qquad q_{ij} = \frac{(1 + d(y_i, y_j)^2)^{-1}}{\sum_{k \neq l} (1 + d(y_k, y_l)^2)^{-1}}$$
$$p_{ij} = \frac{p_{j|i} + p_{i|j}}{2n}$$

We define the distance between our evaluation distribution P and our reference distribution Q, as the symmetrized Kullback-Leibler (called Jensen–Shannon divergence):

 $D_{JS}(P, Q) = D_{KL}(P||Q)/2 + D_{KL}(Q||P)/2$

Since this metric gives a value between 0 and infinite, we will use a logistic function to limit it to the interval [0, 1)

then our Fidelity function F(d) is defined as:

$$F(d) = \frac{1}{1 + e^{-(D_{JS} - \beta)}}$$

where

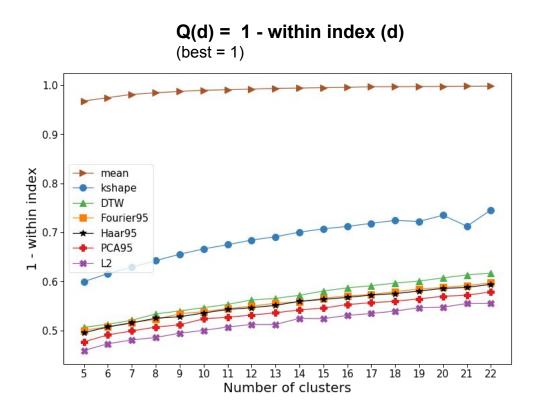
beta = 2 x sigma, where sigma is the standard deviation of the D_{JS} values for all the considered models {d}.

We considered the times series corresponding to 199 winter scenarios for one geographical point (next to Paris location: lat long 48.8°, 2.3°).

For each of the 199 times series we considered 2048 winter hours (aprox 85 winter days). The length of the series was chosen to be a power of 2, which simplifies the wavelets decomposition.

Models

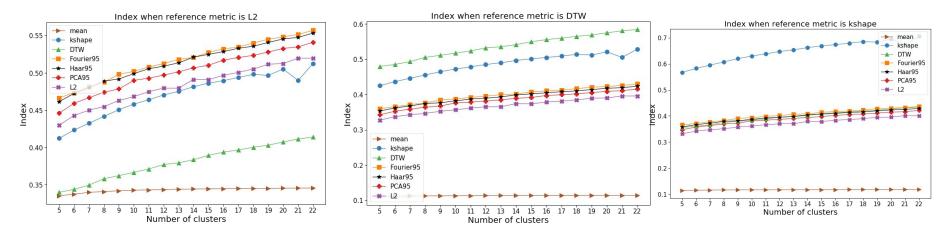
Representation of the data	Distance	Number of clusters	Clustering method	Name
Plain time series	euclidean	range from 5 to 22	k-medoids	L2
PCA 95%	euclidean	range from 5 to 22	k-medoids	PCA95
Fourier 95%	euclidean	range from 5 to 22	k-medoids	Fourier95
Haar 95%	euclidean	range from 5 to 22	k-medoids	Haar95
Plain time series	euclidean	range from 5 to 22	k-medoids	mean
z-normalized time series	DTW	range from 5 to 22	k-medoids	DTW
z-normalized time series	max lag cc	range from 5 to 22	k-means	MLCC



Each point in the plot is the mean value of 25 independent runs of the clustering algorithm (the same with the following plots).

Results on RTE

Index = F(d) * Q(d)



L2 as reference metric

Best: Fourier 0.95 2best: Haar 0.95

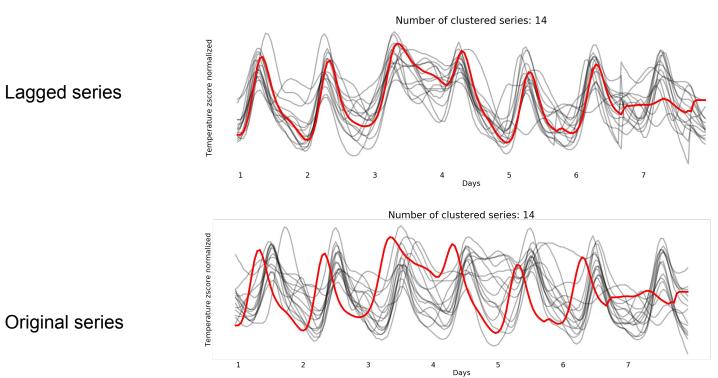
DTW as reference metric

Best: DTW 2best: MLCC 3 best: fourier 0.95

MLCC as reference metric

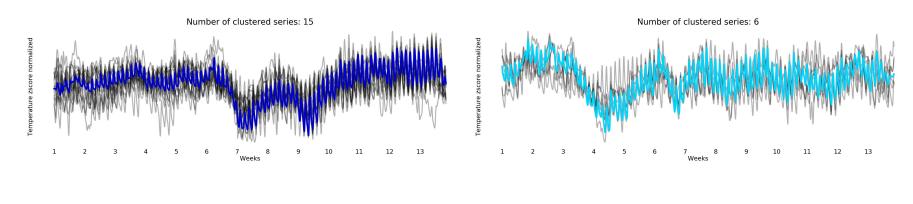
Best: MLCC 2best: Fourier 0.95

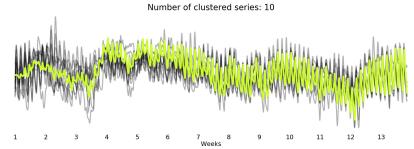
MLCC results - 1 week



32

MLCC results







The UCR series datasets is a set of labeled temporal series datasets.

In order to evaluate our metric we will compare the distance chosen by our index with the one selected using the accuracy.

Statistics over UCR

Metric with best accuracy	Number of data sets	Reference metric for our index	proportion of datasets where our index selects the metric with best accuracy
MLCC	27	MLCC	23/27 = 0.852
MLCC	27	DTW	12/27 = 0.444
MLCC	27	12	17/27 = 0.63
DTW	38	MLCC	3/38 = 0.078
DTW	38	DTW	15/38 = 0.395
DTW	38	12	3/38 = 0.079
other (haar95, fourier95, PCA95, I2)	34	MLCC	1/34 = 0.029
other (haar95, fourier95, PCA95, I2)	34	DTW	2/34 = 0.059
other (haar95, fourier95, PCA95, I2)	34	12	3/34 = 0.088

We aim at a definition of quantiles for the whole serie (not for marginals).

Several definitions in the literature: For instance:

Daniel Peña, Ruey S. Tsay & Ruben Zamar (2019): Empirical Dynamic Quantiles for Visualization of High-Dimensional Time Series, Technometrics, 2019.

Chernozhukov, V., Galichon, A., Hallin, M., & Henry, M. (2017). Monge– Kantorovich depth, quantiles, ranks and signs. The Annals of Statistics , 45(1), 223-256.

Gouriéroux, C., & Jasiak, J. (2008). Dynamic quantile models. Journal of Econometrics , 147(1), 198-205. Hallin, M., Paindaveine, D., Šiman, M., Wei, Y., Serfling, R., Zuo, Y., ... & Mizera,

I. (2010). Multivariate Quantiles and Multiple-Output Regression Quantiles: From L1 Optimization to Halfspace Depth.[with Discussion and Rejoinder]. The Annals of Statistics , 635-703.

Can we define a notion of quantile (or tube around a serie) using wavelet coefficients?

Practical algorithm (for a fixed quantile a):

- 1. Compute the wavelet coefficients (in your favorite base) of all series
- 2. Define the estimators for the mean coefficients beta and variance (obvious way)
- Threshold the coefficients
 First keep 95% variability,
 then adjust to be at "small enough" distance to one of the data curves depending on the variance
- 4. Using a constant L(a,n,thresholding), define the tube around the function:

 $\sum_{k,i < J_0} \hat{\beta}_{i,k} \psi_{i,k}$

In the case of a (simplistic) model:

$$Y_i(t) = f(t) + \epsilon_i,$$

with f with some regularity, and the noise Gaussian i.i.d.

Then we get results of the type:

Theorem

- + Regularity of noise
- + Regularity of f (in functional space)
- + Right scaling of tube and thresholding implies

$$P(f \not\in \mathsf{Tube}_{\alpha}) \leq \alpha.$$

THANKS