
DATAIA Workshop "Safety & AI"

September 23, 2020

CentraleSupélec

Benedikt Bollig
CNRS, LSV, ENS Paris-Saclay, Université Paris-Saclay

joint work with LeaRNNify team:
Benoît Barbot, Alain, Finkel, Serge Haddad, Igor Khmelnitsky, Daniel Neider,

Martin Leucker, Rajarshi Roy, Lina Ye

New Challenges for Automata Learning
Property-Directed Verification of Recurrent Neural Networks

never occurs

never occurs
⊆ ?

Model
checking

Yes / No

never occurs
⊆ ?

Model
checking

Yes / No

never occurs
⊆ ?

Model
checking

Yes / No⊆ ?

Model
checking

Yes / No⊆ ?

Model
checking

Yes / No⊆ ?

Model
checking×

Yes / No⊆ ?

Model
checking Model Checking

[Clarke-Emerson, Queille-Sifakis '80s]

⊆ ?

Model
checking Model Checking

[Clarke-Emerson, Queille-Sifakis '80s]

Black box

⊆ ?

Model
checking Model Checking

[Clarke-Emerson, Queille-Sifakis '80s]

legacy software
code not open source
third-party software
embedded systems

Black box

⊆ ?

Model
checking Model Checking

[Clarke-Emerson, Queille-Sifakis '80s]

legacy software
code not open source
third-party software
embedded systems

Black box

⊆ ?

Model
checking Model Checking

[Clarke-Emerson, Queille-Sifakis '80s]

Learner
Learning algorithm

legacy software
code not open source
third-party software
embedded systems

Black box

⊆ ?

Model
checking Model Checking

[Clarke-Emerson, Queille-Sifakis '80s]

Learner
Learning algorithm

legacy software
code not open source
third-party software
embedded systems

Black box

⊆ ?

Model
checking Model Checking

[Clarke-Emerson, Queille-Sifakis '80s]

Learner
Learning algorithm

produces Model

legacy software
code not open source
third-party software
embedded systems

Black box

⊆ ?

Model
checking Model Checking

[Clarke-Emerson, Queille-Sifakis '80s]

Learner
Learning algorithm

produces Model

legacy software
code not open source
third-party software
embedded systems

Black box

⊆ ?

Model
checking Model Checking

[Clarke-Emerson, Queille-Sifakis '80s]

Learner
Learning algorithm

produces Model

Inference/Model Learning
[Moore '50s, Angluin '80s]

legacy software
code not open source
third-party software
embedded systems

Black box

⊆ ?

Model
checking Model Checking

[Clarke-Emerson, Queille-Sifakis '80s]

Learner
Learning algorithm

produces Model

Inference/Model Learning
[Moore '50s, Angluin '80s]

[F. Vaandrager 2017]

legacy software
code not open source
third-party software
embedded systems

Black box

⊆ ?

Sys t me

Angluin's L* Algorithm
[Angluin 1987]

Sys t me

L= (a+b)∗b (a+b)

Angluin's L* Algorithm
[Angluin 1987]

Sys t me

L= (a+b)∗b (a+b)

fL(w)=1 iff w∈L
fL :Σ∗ → 0,1{ }

Angluin's L* Algorithm
[Angluin 1987]

Learner
Learning algorithmSys t me

L= (a+b)∗b (a+b)

fL(w)=1 iff w∈L
fL :Σ∗ → 0,1{ }

Angluin's L* Algorithm
[Angluin 1987]

Learner
Learning algorithmSys t me

L= (a+b)∗b (a+b)

fL(w)=1 iff w∈L
fL :Σ∗ → 0,1{ }

Angluin's L* Algorithm
[Angluin 1987]

Learner
Learning algorithm ModelSys t me

produces

L= (a+b)∗b (a+b) Model

ε

a

bb

b ba

b a

ab

a

b

fL(w)=1 iff w∈L
fL :Σ∗ → 0,1{ }

Angluin's L* Algorithm
[Angluin 1987]

Learner
Learning algorithm ModelSys t me

produces

L= (a+b)∗b (a+b) Model

ε

a

bb

b ba

b a

ab

a

b

Model
Checking

fL(w)=1 iff w∈L
fL :Σ∗ → 0,1{ }

Angluin's L* Algorithm
[Angluin 1987]

Learner
Learning algorithmSys t me

L= (a+b)∗b (a+b)

Angluin's L* Algorithm
[Angluin 1987]

fL(w)=1 iff w∈L
fL :Σ∗ → 0,1{ }

Learner
Learning algorithmSys t me

L= (a+b)∗b (a+b)

Angluin's L* Algorithm

membership queries

[Angluin 1987]

fL(w)=1 iff w∈L
fL :Σ∗ → 0,1{ }

ε,a,b,ab,ba,…∈L?

Learner
Learning algorithmSys t me

L= (a+b)∗b (a+b)
ε

ε. 0
a 0
b 0

Angluin's L* Algorithm

membership queries

[Angluin 1987]

fL(w)=1 iff w∈L
fL :Σ∗ → 0,1{ }

ε,a,b,ab,ba,…∈L?

Learner
Learning algorithmSys t me

L= (a+b)∗b (a+b)
ε

ε. 0
a 0
b 0

Angluin's L* Algorithm

membership queries

[Angluin 1987]

fL(w)=1 iff w∈L
fL :Σ∗ → 0,1{ }

ε,a,b,ab,ba,…∈L?

Learner
Learning algorithmSys t me

L= (a+b)∗b (a+b)
ε

ε. 0
a 0
b 0

Angluin's L* Algorithm

membership queries

[Angluin 1987]

fL(w)=1 iff w∈L
fL :Σ∗ → 0,1{ }

ε,a,b,ab,ba,…∈L?

Learner
Learning algorithmSys t me

L= (a+b)∗b (a+b)
ε

ε. 0
a 0
b 0

Angluin's L* Algorithm

membership queries

[Angluin 1987]

fL(w)=1 iff w∈L
fL :Σ∗ → 0,1{ }

ε,a,b,ab,ba,…∈L?

upper part = states

Learner
Learning algorithmSys t me

L= (a+b)∗b (a+b)
ε

ε. 0
a 0
b 0

Angluin's L* Algorithm

membership queries

[Angluin 1987]

fL(w)=1 iff w∈L
fL :Σ∗ → 0,1{ }

ε,a,b,ab,ba,…∈L?

upper part = states

lower part = transitions

Learner
Learning algorithmSys t me

L= (a+b)∗b (a+b)
ε

ε. 0
a 0
b 0

Angluin's L* Algorithm

membership queries

[Angluin 1987]

fL(w)=1 iff w∈L
fL :Σ∗ → 0,1{ }

ε,a,b,ab,ba,…∈L?

a b

Learner
Learning algorithmSys t me

L= (a+b)∗b (a+b)
ε

ε. 0
a 0
b 0

coherent ✔

Angluin's L* Algorithm

membership queries

[Angluin 1987]

fL(w)=1 iff w∈L
fL :Σ∗ → 0,1{ }

ε,a,b,ab,ba,…∈L?

Learner
Learning algorithm ModelSys t me

produces

L= (a+b)∗b (a+b)
ε

ε. 0
a 0
b 0

ε

a,b

coherent ✔

Angluin's L* Algorithm

membership queries

[Angluin 1987]

fL(w)=1 iff w∈L
fL :Σ∗ → 0,1{ }

ε,a,b,ab,ba,…∈L?

Learner
Learning algorithm

EQs
Conformance?

ModelSys t me

produces

L= (a+b)∗b (a+b)
ε

ε. 0
a 0
b 0

ε

a,b

coherent ✔

Angluin's L* Algorithm

membership queries

[Angluin 1987]

fL(w)=1 iff w∈L
fL :Σ∗ → 0,1{ }

ε,a,b,ab,ba,…∈L?

Learner
Learning algorithm

EQs
Conformance?

ModelSys t me

No

produces

L= (a+b)∗b (a+b)
ε

ε. 0
a 0
b 0

ε

a,b

ba

coherent ✔

Angluin's L* Algorithm

membership queries

[Angluin 1987]

fL(w)=1 iff w∈L
fL :Σ∗ → 0,1{ }

ε,a,b,ab,ba,…∈L?

Learner
Learning algorithm

EQs
Conformance?

ModelSys t me

No

produces

L= (a+b)∗b (a+b)
ε

ε. 0
a 0
b 0

ε

a,b

ba

ε
ε. 0
b. 0

ba. 1
a 0

bb 1
baa 0
bab 0

coherent ✔

Angluin's L* Algorithm

membership queries

[Angluin 1987]

fL(w)=1 iff w∈L
fL :Σ∗ → 0,1{ }

ε,a,b,ab,ba,…∈L?

Learner
Learning algorithm

EQs
Conformance?

ModelSys t me

produces

L= (a+b)∗b (a+b)
ε

ε. 0
a 0
b 0

ε
ε. 0
b. 0

ba. 1
a 0

bb 1
baa 0
bab 0

coherent ✔

consistent ✘

Angluin's L* Algorithm

membership queries

a a

[Angluin 1987]

fL(w)=1 iff w∈L
fL :Σ∗ → 0,1{ }

ε,a,b,ab,ba,…∈L?

Learner
Learning algorithm

EQs
Conformance?

ModelSys t me

produces

L= (a+b)∗b (a+b)
ε

ε. 0
a 0
b 0

ε
ε. 0
b. 0

ba. 1
a 0

bb 1
baa 0
bab 0

ε a
ε. 0 0
b. 0 1

ba. 1 0
a 0 0

bb 1 1
baa 0 0
bab 0 1

coherent ✔

consistent ✘

Angluin's L* Algorithm

membership queries

[Angluin 1987]

fL(w)=1 iff w∈L
fL :Σ∗ → 0,1{ }

ε,a,b,ab,ba,…∈L?

Learner
Learning algorithm

EQs
Conformance?

ModelSys t me

produces

L= (a+b)∗b (a+b)
ε

ε. 0
a 0
b 0

ε
ε. 0
b. 0

ba. 1
a 0

bb 1
baa 0
bab 0

ε a
ε. 0 0
b. 0 1

ba. 1 0
a 0 0

bb 1 1
baa 0 0
bab 0 1

coherent ✔

consistent ✘ closed ✘

Angluin's L* Algorithm

membership queries

[Angluin 1987]

fL(w)=1 iff w∈L
fL :Σ∗ → 0,1{ }

ε,a,b,ab,ba,…∈L?

Learner
Learning algorithm

EQs
Conformance?

ModelSys t me

produces

L= (a+b)∗b (a+b)
ε

ε. 0
a 0
b 0

ε
ε. 0
b. 0

ba. 1
a 0

bb 1
baa 0
bab 0

ε a
ε. 0 0
b. 0 1

ba. 1 0
a 0 0

bb 1 1
baa 0 0
bab 0 1

ε a
ε. 0 0
b. 0 1

ba. 1 0
bb. 1 1

a 0 0
baa 0 0
bab 0 1
bba 1 0
bbb 1 1

coherent ✔

consistent ✘ closed ✘

Angluin's L* Algorithm

membership queries

[Angluin 1987]

fL(w)=1 iff w∈L
fL :Σ∗ → 0,1{ }

ε,a,b,ab,ba,…∈L?

Learner
Learning algorithm

EQs
Conformance?

ModelSys t me

produces

L= (a+b)∗b (a+b)
ε

ε. 0
a 0
b 0

ε
ε. 0
b. 0

ba. 1
a 0

bb 1
baa 0
bab 0

ε a
ε. 0 0
b. 0 1

ba. 1 0
a 0 0

bb 1 1
baa 0 0
bab 0 1

ε a
ε. 0 0
b. 0 1

ba. 1 0
bb. 1 1

a 0 0
baa 0 0
bab 0 1
bba 1 0
bbb 1 1

coherent ✔

consistent ✘ closed ✘

coherent ✔

Angluin's L* Algorithm

membership queries

[Angluin 1987]

fL(w)=1 iff w∈L
fL :Σ∗ → 0,1{ }

ε,a,b,ab,ba,…∈L?

Learner
Learning algorithm

EQs
Conformance?

ModelSys t me

produces

L= (a+b)∗b (a+b)
ε

ε. 0
a 0
b 0

ε
ε. 0
b. 0

ba. 1
a 0

bb 1
baa 0
bab 0

ε a
ε. 0 0
b. 0 1

ba. 1 0
a 0 0

bb 1 1
baa 0 0
bab 0 1

ε a
ε. 0 0
b. 0 1

ba. 1 0
bb. 1 1

a 0 0
baa 0 0
bab 0 1
bba 1 0
bbb 1 1

coherent ✔

consistent ✘ closed ✘

coherent ✔

Model

ε

a

bb

b ba

b a

ab

a

b

Angluin's L* Algorithm

membership queries

[Angluin 1987]

fL(w)=1 iff w∈L
fL :Σ∗ → 0,1{ }

ε,a,b,ab,ba,…∈L?

b

Learner
Learning algorithm

EQs
Conformance?Yes

ModelSys t me

produces

L= (a+b)∗b (a+b)
ε

ε. 0
a 0
b 0

ε
ε. 0
b. 0

ba. 1
a 0

bb 1
baa 0
bab 0

ε a
ε. 0 0
b. 0 1

ba. 1 0
a 0 0

bb 1 1
baa 0 0
bab 0 1

ε a
ε. 0 0
b. 0 1

ba. 1 0
bb. 1 1

a 0 0
baa 0 0
bab 0 1
bba 1 0
bbb 1 1

coherent ✔

consistent ✘ closed ✘

coherent ✔

Model

ε

a

bb

b ba

b a

ab

a

b

Angluin's L* Algorithm

membership queries

✔ [Angluin 1987]

fL(w)=1 iff w∈L
fL :Σ∗ → 0,1{ }

ε,a,b,ab,ba,…∈L?

b

Learner
Learning algorithm

EQs
Conformance?Yes

ModelSys t me

produces

L= (a+b)∗b (a+b)
ε

ε. 0
a 0
b 0

ε
ε. 0
b. 0

ba. 1
a 0

bb 1
baa 0
bab 0

ε a
ε. 0 0
b. 0 1

ba. 1 0
a 0 0

bb 1 1
baa 0 0
bab 0 1

ε a
ε. 0 0
b. 0 1

ba. 1 0
bb. 1 1

a 0 0
baa 0 0
bab 0 1
bba 1 0
bbb 1 1

coherent ✔

consistent ✘ closed ✘

coherent ✔

Model

ε

a

bb

b ba

b a

ab

a

b

Angluin's L* Algorithm

membership queries

✔ [Angluin 1987]

Model
Checking

fL(w)=1 iff w∈L
fL :Σ∗ → 0,1{ }

ε,a,b,ab,ba,…∈L?

b

legacy software
code not open source
third-party software
embedded systems

RNN R

legacy software
code not open source
third-party software
embedded systems
recurrent neural networks (RNNs)

RNN R

legacy software
code not open source
third-party software
embedded systems
recurrent neural networks (RNNs)

(approach works for binary classifiers)

RNN R

f : !k×!ℓ→ !k

state
!

input
!

state
!

RNN R

f : !k×!ℓ→ !kΣ
state
!

input
!

state
!

RNN R

f : !k×!ℓ→ !kΣ∗
state
!

input
!

state
!

RNN R

f : !k×!ℓ→ !kΣ∗

g : !k → 0,1{ }

state
!

input
!

state
!

state
!

RNN R

f : !k×!ℓ→ !kΣ∗

g : !k → 0,1{ }

! language acceptor
L(R)= w ∈Σ∗ Ɉg(f (init ,w))=1{ }

state
!

input
!

state
!

state
!

RNN R

f : !k×!ℓ→ !kΣ∗

g : !k → 0,1{ }

! language acceptor
L(R)= w ∈Σ∗ Ɉg(f (init ,w))=1{ }

state
!

input
!

state
!

state
!

What does correctness for RNNs mean?

RNN R

f : !k×!ℓ→ !kΣ∗

g : !k → 0,1{ }

! language acceptor
L(R)= w ∈Σ∗ Ɉg(f (init ,w))=1{ }

state
!

input
!

state
!

state
!

Specify correctness using
finite automata E,N ,P over Σ

What does correctness for RNNs mean?

RNN R

f : !k×!ℓ→ !kΣ∗

g : !k → 0,1{ }

! language acceptor
L(R)= w ∈Σ∗ Ɉg(f (init ,w))=1{ }

state
!

input
!

state
!

state
!

L(R)= L(E)Specify correctness using
finite automata E,N ,P over Σ

L(R)= L(E)

What does correctness for RNNs mean?

RNN R

f : !k×!ℓ→ !kΣ∗

g : !k → 0,1{ }

! language acceptor
L(R)= w ∈Σ∗ Ɉg(f (init ,w))=1{ }

state
!

input
!

state
!

state
!

L(R)= L(E)Specify correctness using
finite automata E,N ,P over Σ

L(R)= L(E)

! L(R) is a regular language

What does correctness for RNNs mean?

RNN R

f : !k×!ℓ→ !kΣ∗

g : !k → 0,1{ }

! language acceptor
L(R)= w ∈Σ∗ Ɉg(f (init ,w))=1{ }

state
!

input
!

state
!

state
!

L(R)= L(E)Specify correctness using
finite automata E,N ,P over Σ

L(R)= L(E)

! L(R) is a regular language

What does correctness for RNNs mean?

restrictive: how about RNNs recognizing XML documents?

RNN R

f : !k×!ℓ→ !kΣ∗

g : !k → 0,1{ }

! language acceptor
L(R)= w ∈Σ∗ Ɉg(f (init ,w))=1{ }

state
!

input
!

state
!

state
!

L(R)= L(E)Specify correctness using
finite automata E,N ,P over Σ

L(R)

L(N)

L(R)= L(E)

R does not produce false positives
each w ∈L(N) must be classified as negative

! L(R) is a regular language

What does correctness for RNNs mean?

restrictive: how about RNNs recognizing XML documents?

RNN R

f : !k×!ℓ→ !kΣ∗

g : !k → 0,1{ }

! language acceptor
L(R)= w ∈Σ∗ Ɉg(f (init ,w))=1{ }

state
!

input
!

state
!

state
!

L(R)= L(E)Specify correctness using
finite automata E,N ,P over Σ

L(R)

L(N)

L(R)⊆ L(N)

L(R)= L(E)

R does not produce false positives
each w ∈L(N) must be classified as negative

! L(R) is a regular language
complement

What does correctness for RNNs mean?

restrictive: how about RNNs recognizing XML documents?

RNN R

f : !k×!ℓ→ !kΣ∗

g : !k → 0,1{ }

! language acceptor
L(R)= w ∈Σ∗ Ɉg(f (init ,w))=1{ }

state
!

input
!

state
!

state
!

L(R)= L(E)Specify correctness using
finite automata E,N ,P over Σ

L(R)

L(N)

L(R)⊆ L(N)

L(R)= L(E)

R does not produce false positives
each w ∈L(N) must be classified as negative

! L(R) is a regular language

R does not produce false negatives
each w ∈L(P) must be classified as positive

L(R) L(P)

complement

What does correctness for RNNs mean?

restrictive: how about RNNs recognizing XML documents?

RNN R

f : !k×!ℓ→ !kΣ∗

g : !k → 0,1{ }

! language acceptor
L(R)= w ∈Σ∗ Ɉg(f (init ,w))=1{ }

state
!

input
!

state
!

state
!

L(R)= L(E)Specify correctness using
finite automata E,N ,P over Σ

L(R)

L(N)

L(R)⊆ L(N)

L(R)= L(E)

R does not produce false positives
each w ∈L(N) must be classified as negative

! L(R) is a regular language

L(R)⊆ L(P)

R does not produce false negatives
each w ∈L(P) must be classified as positive

L(R) L(P)

complement

complement

What does correctness for RNNs mean?

restrictive: how about RNNs recognizing XML documents?

RNN R

f : !k×!ℓ→ !kΣ∗

g : !k → 0,1{ }

! language acceptor
L(R)= w ∈Σ∗ Ɉg(f (init ,w))=1{ }

state
!

input
!

state
!

state
!

L(R)= L(E)Specify correctness using
finite automata E,N ,P over Σ

L(R)

L(N)

L(R)⊆ L(N)

L(R)= L(E)

R does not produce false positives
each w ∈L(N) must be classified as negative

! L(R) is a regular language

L(R)⊆ L(P)

R does not produce false negatives
each w ∈L(P) must be classified as positive

L(R) L(P)

inclusion
checking

complement

complement

What does correctness for RNNs mean?

restrictive: how about RNNs recognizing XML documents?

Assume R is supposed to recognize XML documents over
Σ= <list>, </list>, <item>, </item>{ }.

</list>

</item>

<item>
<list>

</item>
<item>

<list>

</list>

<item>
</item>

<item>
</item>

Assume R is supposed to recognize XML documents over
Σ= <list>, </list>, <item>, </item>{ }.

Regular negative specification N :

</list>

</item>

<item>
<list>

</item>
<item>

<list>

</list>

<item>
</item>

<item>
</item>

Assume R is supposed to recognize XML documents over
Σ= <list>, </list>, <item>, </item>{ }.

Regular negative specification N :

" there is an opening tag that is not
 eventually followed by a corresponding closing tag"

</list>

</item>

<item>
<list>

</item>
<item>

<list>

</list>

<item>
</item>

<item>
</item>

<item>

Assume R is supposed to recognize XML documents over
Σ= <list>, </list>, <item>, </item>{ }.

Regular negative specification N :

" there is an opening tag that is not
 eventually followed by a corresponding closing tag"

<list>

<item>

</list>

</item>

</list>
</item>

<list>

</item>
<item>

<list>
</list>

<list>
<item>

N

</list>

</item>

<item>
<list>

</item>
<item>

<list>

</list>

<item>
</item>

<item>
</item>

</item>

</list>

<item>

Assume R is supposed to recognize XML documents over
Σ= <list>, </list>, <item>, </item>{ }.

Regular negative specification N :

<list> <item> </item> <item> </list> ∈L(N)

" there is an opening tag that is not
 eventually followed by a corresponding closing tag"

<list>

<item>

</list>

</item>

</list>
</item>

<list>

</item>
<item>

<list>
</list>

<list>
<item>

N

</list>

</item>

<item>
<list>

</item>
<item>

<list>

</list>

<item>
</item>

<item>
</item>

</item>

</list>

<item>

Assume R is supposed to recognize XML documents over
Σ= <list>, </list>, <item>, </item>{ }.

Regular negative specification N :

<list> <item> <item> </item> </list> /∈L(N)
<list> <item> </item> <item> </list> ∈L(N)

" there is an opening tag that is not
 eventually followed by a corresponding closing tag"

<list>

<item>

</list>

</item>

</list>
</item>

<list>

</item>
<item>

<list>
</list>

<list>
<item>

N

</list>

</item>

<item>
<list>

</item>
<item>

<list>

</list>

<item>
</item>

<item>
</item>

</item>

</list>

<item>

Assume R is supposed to recognize XML documents over
Σ= <list>, </list>, <item>, </item>{ }.

Regular negative specification N :

<list> <item> <item> </item> </list> /∈L(N)
<list> <item> </item> <item> </list> ∈L(N)

" there is an opening tag that is not
 eventually followed by a corresponding closing tag"

We check L(R)⊆ L(N).

<list>

<item>

</list>

</item>

</list>
</item>

<list>

</item>
<item>

<list>
</list>

<list>
<item>

N

</list>

</item>

<item>
<list>

</item>
<item>

<list>

</list>

<item>
</item>

<item>
</item>

</item>

</list>

<item>

Assume R is supposed to recognize XML documents over
Σ= <list>, </list>, <item>, </item>{ }.

Regular negative specification N :

<list> <item> <item> </item> </list> /∈L(N)
<list> <item> </item> <item> </list> ∈L(N)

" there is an opening tag that is not
 eventually followed by a corresponding closing tag"

We check L(R)⊆ L(N).

<list>

<item>

</list>

</item>

</list>
</item>

<list>

</item>
<item>

<list>
</list>

<list>
<item>

N

</list>

</item>

<item>
<list>

</item>
<item>

<list>

</list>

<item>
</item>

<item>
</item>

</item>

</list>

Checking L(R)⊆ L(A) for deterministic finite automaton A

Checking L(R)⊆ L(A) for deterministic finite automaton A

Statistical model checking (SMC)

Checking L(R)⊆ L(A) for deterministic finite automaton A

Statistical model checking (SMC)

Automaton abstraction & model checking (AAMC)
 (model-learning approach)

Checking L(R)⊆ L(A) for deterministic finite automaton A

Statistical model checking (SMC)

Automaton abstraction & model checking (AAMC)
 (model-learning approach)

Property-directed verification (PDV)

RNN R

Statistical model checking (SMC)

Fix ε,γ>0.
Sample log(2 / ε) / (2γ2) words over Σ.
If, for some word w , we have w ∈L(R) and w /∈L(A):
 Property not satisfied.
Else, R is ε-approximately correct with probability at least 1−γ.

RNN R

Statistical model checking (SMC)

Fix ε,γ>0.
Sample log(2 / ε) / (2γ2) words over Σ.
If, for some word w , we have w ∈L(R) and w /∈L(A):
 Property not satisfied.
Else, R is ε-approximately correct with probability at least 1−γ.

RNN R

Statistical model checking (SMC)

Fix ε,γ>0.
Sample log(2 / ε) / (2γ2) words over Σ.
If, for some word w , we have w ∈L(R) and w /∈L(A):
 Property not satisfied.
Else, R is ε-approximately correct with probability at least 1−γ.

RNN R

Statistical model checking (SMC)

Fix ε,γ>0.
Sample log(2 / ε) / (2γ2) words over Σ.
If, for some word w , we have w ∈L(R) and w /∈L(A):
 Property not satisfied.
Else, R is ε-approximately correct with probability at least 1−γ.

Pr L(R)!L(A)() < ε

RNN R

Statistical model checking (SMC)

Fix ε,γ>0.
Sample log(2 / ε) / (2γ2) words over Σ.
If, for some word w , we have w ∈L(R) and w /∈L(A):
 Property not satisfied.
Else, R is ε-approximately correct with probability at least 1−γ.

Pr L(R)!L(A)() < ε

• May require many queries.

• Relies on probability distribution.

Learner
Angluin's L*

EQs
Yes

No

producesmembership queries

✔

Model

Automaton abstraction & model checking (AAMC)

RNN R

Learner
Angluin's L*

EQs
Yes

No

producesmembership queries

✔ Model
Checking

Model

Automaton abstraction & model checking (AAMC)

RNN R

Learner
Angluin's L*

EQs
Yes

No

producesmembership queries

✔ Model
Checking

Model

Automaton abstraction & model checking (AAMC)

RNN R

L(R) not necessarily regular

Learner
Angluin's L*

EQs
Yes

No

producesmembership queries

✔ Model
Checking

Model

Automaton abstraction & model checking (AAMC)

RNN R

not guaranteed
to terminate anymoreL(R) not necessarily regular

Learner
Angluin's L*

EQs
Yes

No

producesmembership queries

✔ Model
Checking

Model

bounded

[Mayr, Yovine: Regular inference on artificial neural networks. CD-MAKE 2018]

Automaton abstraction & model checking (AAMC)

RNN R

not guaranteed
to terminate anymoreL(R) not necessarily regular

Learner
Angluin's L*

EQs
Yes

No

producesmembership queries

✔ Model
Checking

Model

bounded

[Mayr, Yovine: Regular inference on artificial neural networks. CD-MAKE 2018]

Automaton abstraction & model checking (AAMC)

RNN R

SMC

not guaranteed
to terminate anymoreL(R) not necessarily regular

Learner
Angluin's L*

EQs
Yes

No

producesmembership queries

✔ Model
Checking

Model

bounded

[Mayr, Yovine: Regular inference on artificial neural networks. CD-MAKE 2018]

Automaton abstraction & model checking (AAMC)

RNN R

SMC

• Relies on probability distribution.

not guaranteed
to terminate anymoreL(R) not necessarily regular

Learner
Angluin's L*

EQs
Yes

No

producesmembership queries

✔ Model
Checking

Model

bounded

[Mayr, Yovine: Regular inference on artificial neural networks. CD-MAKE 2018]

Automaton abstraction & model checking (AAMC)

RNN R

SMC

• Counterexample may be spurious.

• Relies on probability distribution.

not guaranteed
to terminate anymoreL(R) not necessarily regular

As EQs are implemented by SMC, a "counterexample" may be classified by RNN as negative.

Learner
Learning algorithm

produces

RNN R

MQs Learner
Angluin's L*

[Weiss, Goldberg, Yahav: Extracting Automata from Recurrent Neural Networks Using Queries and
Counterexamples. ICML 2018]

Model

Learner
Learning algorithm

EQs

produces

RNN R

MQs Learner
Angluin's L*

[Weiss, Goldberg, Yahav: Extracting Automata from Recurrent Neural Networks Using Queries and
Counterexamples. ICML 2018]

Model

SMC

Learner
Learning algorithm

EQs

produces

RNN R

MQs

Abstraction

Learner
Angluin's L*

B

[Weiss, Goldberg, Yahav: Extracting Automata from Recurrent Neural Networks Using Queries and
Counterexamples. ICML 2018]

Model

performed wrt.
abstraction

Learner
Learning algorithm

EQs

produces

RNN R

MQs

Abstraction
Yes

Learner
Angluin's L*

B

[Weiss, Goldberg, Yahav: Extracting Automata from Recurrent Neural Networks Using Queries and
Counterexamples. ICML 2018]

Model

✔
performed wrt.

abstraction

Learner
Learning algorithm

EQs

produces

RNN R

MQs

Abstraction
Yes

Learner
Angluin's L*

No
B

w ∈L(B) ⇔ w ∈L(R)

[Weiss, Goldberg, Yahav: Extracting Automata from Recurrent Neural Networks Using Queries and
Counterexamples. ICML 2018]

Model

✔
performed wrt.

abstraction

Learner
Learning algorithm

EQs

produces

RNN R

MQs

Abstraction
Yes

Learner
Angluin's L*

No
B

w ∈L(B) ⇔ w ∈L(R)

Yes
w counterexample

[Weiss, Goldberg, Yahav: Extracting Automata from Recurrent Neural Networks Using Queries and
Counterexamples. ICML 2018]

Model

✔
performed wrt.

abstraction

Learner
Learning algorithm

EQs

produces

RNN R

MQs

Abstraction
Yes

Learner
Angluin's L*

No
B

w ∈L(B) ⇔ w ∈L(R)

Yes

NoRefinement

w counterexample

[Weiss, Goldberg, Yahav: Extracting Automata from Recurrent Neural Networks Using Queries and
Counterexamples. ICML 2018]

Model

✔
performed wrt.

abstraction

Learner
Learning algorithm

EQs

produces

RNN R

MQs

Abstraction
Yes

Learner
Angluin's L*

No
B

w ∈L(B) ⇔ w ∈L(R)

Yes

NoRefinement

w counterexample

[Weiss, Goldberg, Yahav: Extracting Automata from Recurrent Neural Networks Using Queries and
Counterexamples. ICML 2018]

Model

✔

Model
Checking

performed wrt.
abstraction

Learner
Learning algorithm

EQs

produces

RNN R

MQs

Abstraction
Yes

Learner
Angluin's L*

No
B

w ∈L(B) ⇔ w ∈L(R)

Yes

NoRefinement

w counterexample

[Weiss, Goldberg, Yahav: Extracting Automata from Recurrent Neural Networks Using Queries and
Counterexamples. ICML 2018]

Model

✔

Model
Checking

• Does not rely on probability distribution.

performed wrt.
abstraction

Learner
Learning algorithm

EQs

produces

RNN R

MQs

Abstraction
Yes

Learner
Angluin's L*

No
B

w ∈L(B) ⇔ w ∈L(R)

Yes

NoRefinement

w counterexample

[Weiss, Goldberg, Yahav: Extracting Automata from Recurrent Neural Networks Using Queries and
Counterexamples. ICML 2018]

Model

✔

Model
Checking• But counterexample may be spurious.

• Does not rely on probability distribution.

Depends on the quality of the abstraction.

performed wrt.
abstraction

Table 1. Experimental results

Type Avg time (s) Avg len # Mistakes Avg MQs

SMC 92 111 122 286063
AAMC 444 7 30 3701916
PDV 21 11 109 28318

Mistakes is the number of random instances for which a mistake was found, and (iv) Avg MQs is the average
number of membership queries asked to the RNN.

Note that not only is PDV faster and finds more errors than AAMC, the average number of states of the
final DFA is also much smaller: 26 states with PDV and 319 with AAMC.

Comparing PDV to SMC, it is 4.5 times faster and it asked 10 times less MQs from the RNN, even though
it found a little less mistakes. The time difference can become even more apparent if PDV was implemented
in something other than Python. Another observation is that the length of the counter examples are much
smaller in PDV.

Faulty Flows. One of the advantages of extracting DFAs in order to detect mistakes in a given RNN is the
possibility to find not only one mistake but a “faulty flow”. For example, Figure 2 shows one DFA extracted
with PDV, based on which we found a mistake in the corresponding RNN. The counter example we found
was (a, b, c, e, e). One can see that the word (a, b, c, e) is a loop in the DFA. Hence we can suspect that this
could be a “faulty flow”. Checking the words wn = (a, b, c, e)n(e) for n 2 [1..100], we observed that for any
n 2 [1..100] the word wn was in the RNN language but not in the specification.

Fig. 2. Faulty Flow in DFA extracted through PDV

0 1

2 3 4

e

a, c b, d

a

b, c, d, e
e

b, c, d

a

b

a, c, d, e

a, c

b, d, e

To automate the reasoning above, we did the following: Given an RNN R, a specification A, the extracted
DFA H, and the counter example w:

1. Build the cross product DFA: A⇥ = A⇥H.

2. For every prefix w1 of the counter example w = w1w2, denote by sw1 the state to which the prefix w1

leads in A⇥. For any loop ` starting from sw1 , check if wf
n = w1`nw2 is a counter example for n 2 [1...100].

3. If wf
n is a counter example for more than 20 times, declare “found a faulty flow”.

Using this procedure, we managed to find faulty flows in 81/109 of the counterexamples that were found by
PDV.

RNNs Identifying Contact Sequences. Contact tracing [13] has proven to be increasingly effective in curbing
the spread of infectious diseases. In particular, analyzing contact sequences—sequences of individuals who

9

Checked on 30 DFAs / RNNs and 138 specifications:

Property-directed verification (PDV)

Table 1. Experimental results

Type Avg time (s) Avg len # Mistakes Avg MQs

SMC 92 111 122 286063
AAMC 444 7 30 3701916
PDV 21 11 109 28318

Mistakes is the number of random instances for which a mistake was found, and (iv) Avg MQs is the average
number of membership queries asked to the RNN.

Note that not only is PDV faster and finds more errors than AAMC, the average number of states of the
final DFA is also much smaller: 26 states with PDV and 319 with AAMC.

Comparing PDV to SMC, it is 4.5 times faster and it asked 10 times less MQs from the RNN, even though
it found a little less mistakes. The time difference can become even more apparent if PDV was implemented
in something other than Python. Another observation is that the length of the counter examples are much
smaller in PDV.

Faulty Flows. One of the advantages of extracting DFAs in order to detect mistakes in a given RNN is the
possibility to find not only one mistake but a “faulty flow”. For example, Figure 2 shows one DFA extracted
with PDV, based on which we found a mistake in the corresponding RNN. The counter example we found
was (a, b, c, e, e). One can see that the word (a, b, c, e) is a loop in the DFA. Hence we can suspect that this
could be a “faulty flow”. Checking the words wn = (a, b, c, e)n(e) for n 2 [1..100], we observed that for any
n 2 [1..100] the word wn was in the RNN language but not in the specification.

Fig. 2. Faulty Flow in DFA extracted through PDV

0 1

2 3 4

e

a, c b, d

a

b, c, d, e
e

b, c, d

a

b

a, c, d, e

a, c

b, d, e

To automate the reasoning above, we did the following: Given an RNN R, a specification A, the extracted
DFA H, and the counter example w:

1. Build the cross product DFA: A⇥ = A⇥H.

2. For every prefix w1 of the counter example w = w1w2, denote by sw1 the state to which the prefix w1

leads in A⇥. For any loop ` starting from sw1 , check if wf
n = w1`nw2 is a counter example for n 2 [1...100].

3. If wf
n is a counter example for more than 20 times, declare “found a faulty flow”.

Using this procedure, we managed to find faulty flows in 81/109 of the counterexamples that were found by
PDV.

RNNs Identifying Contact Sequences. Contact tracing [13] has proven to be increasingly effective in curbing
the spread of infectious diseases. In particular, analyzing contact sequences—sequences of individuals who

9

Checked on 30 DFAs / RNNs and 138 specifications:

inspired by black-box checking: interweave learning and model checking
[Peled, Vardi, Yannakakis 1999]

Property-directed verification (PDV)

RNN R

L(H)⊆L(A)

Learner
Angluin's L*

produces

inspired by black-box checking: interweave learning and model checking
[Peled, Vardi, Yannakakis 1999]

MQs

Property-directed verification (PDV)

RNN R
H

L(H)⊆L(A)

Learner
Angluin's L*

produces

inspired by black-box checking: interweave learning and model checking
[Peled, Vardi, Yannakakis 1999]

MQs

Property-directed verification (PDV)

RNN R
H

L(H)⊆L(A)

already shares
properties with RNN

Learner
Angluin's L*

produces

inspired by black-box checking: interweave learning and model checking
[Peled, Vardi, Yannakakis 1999]

MQs

Property-directed verification (PDV)

RNN R
H

L(H)⊆L(A)

EQ
already shares

properties with RNN

✘

Learner
Angluin's L*

Model Checking

produces

inspired by black-box checking: interweave learning and model checking
[Peled, Vardi, Yannakakis 1999]

MQs

Property-directed verification (PDV)

RNN R
H

L(H)⊆L(A)

EQ
already shares

properties with RNN

✘

Learner
Angluin's L*

Model CheckingNo

produces

inspired by black-box checking: interweave learning and model checking
[Peled, Vardi, Yannakakis 1999]

MQs

Property-directed verification (PDV)

RNN R
H

L(H)⊆L(A)

EQ
already shares

properties with RNN

✘

w ∈L(H)

w /∈L(A)

Learner
Angluin's L*

Counterexample
confirmed?

Yes Model CheckingNo

produces

inspired by black-box checking: interweave learning and model checking
[Peled, Vardi, Yannakakis 1999]

MQs

✘

Property-directed verification (PDV)

RNN R
H

L(H)⊆L(A)

EQ
already shares

properties with RNN

✘

w ∈L(H)w ∈L(R)

w /∈L(A)

Learner
Angluin's L*

Counterexample
confirmed?

Yes Model CheckingNo

No (spurious counterexample)

produces

inspired by black-box checking: interweave learning and model checking
[Peled, Vardi, Yannakakis 1999]

MQs

✘

Property-directed verification (PDV)

RNN R
H

L(H)⊆L(A)

EQ
already shares

properties with RNN

✘

mismatch between R and H

w ∈L(H)w ∈L(R)

w /∈L(A)

Learner
Angluin's L*

Inclusion
SMC

Counterexample
confirmed?

Yes Model CheckingNo

YesNo (spurious counterexample)

produces

inspired by black-box checking: interweave learning and model checking
[Peled, Vardi, Yannakakis 1999]

MQs

✘

Property-directed verification (PDV)

RNN R
H

L(H)⊆L(A)

already shares
properties with RNN

EQ

mismatch between R and H

w ∈L(H)w ∈L(R)

w /∈L(A)

Learner
Angluin's L*

Inclusion
SMC

Counterexample
confirmed?

Yes Model CheckingNo

YesNo (spurious counterexample)

produces

inspired by black-box checking: interweave learning and model checking
[Peled, Vardi, Yannakakis 1999]

MQs

✘

Property-directed verification (PDV)

RNN R
H

L(H)⊆L(A)

L(R)⊆L(H)

already shares
properties with RNN

mismatch between R and H

w ∈L(H)w ∈L(R)

w /∈L(A)

Learner
Angluin's L*

Inclusion
SMC

Counterexample
confirmed?

Yes

Yes Model CheckingNo

YesNo (spurious counterexample)

produces

inspired by black-box checking: interweave learning and model checking
[Peled, Vardi, Yannakakis 1999]

MQs

✔

✘

Property-directed verification (PDV)

RNN R
H

L(H)⊆L(A)

L(R)⊆L(H)
R ε-approximately correct
with high probability

already shares
properties with RNN

mismatch between R and H

w ∈L(H)w ∈L(R)

w /∈L(A)

Learner
Angluin's L*

Inclusion
SMC

Counterexample
confirmed?

Yes

Yes Model CheckingNo

Yes

No

No (spurious counterexample)

produces

inspired by black-box checking: interweave learning and model checking
[Peled, Vardi, Yannakakis 1999]

MQs

✔

✘

Property-directed verification (PDV)

RNN R
H

L(H)⊆L(A)

L(R)⊆L(H)
R ε-approximately correct
with high probability

already shares
properties with RNN

mismatch between R and H

mismatch between
R and H

w ∈L(H)w ∈L(R)

w /∈L(A)

Experimental results

Checked on 30 DFAs / RNNs and 138 specifications:Table 1. Experimental results

Type Avg time (s) Avg len # Mistakes Avg MQs

SMC 92 111 122 286063
AAMC 444 7 30 3701916
PDV 21 11 109 28318

Mistakes is the number of random instances for which a mistake was found, and (iv) Avg MQs is the average
number of membership queries asked to the RNN.

Note that not only is PDV faster and finds more errors than AAMC, the average number of states of the
final DFA is also much smaller: 26 states with PDV and 319 with AAMC.

Comparing PDV to SMC, it is 4.5 times faster and it asked 10 times less MQs from the RNN, even though
it found a little less mistakes. The time difference can become even more apparent if PDV was implemented
in something other than Python. Another observation is that the length of the counter examples are much
smaller in PDV.

Faulty Flows. One of the advantages of extracting DFAs in order to detect mistakes in a given RNN is the
possibility to find not only one mistake but a “faulty flow”. For example, Figure 2 shows one DFA extracted
with PDV, based on which we found a mistake in the corresponding RNN. The counter example we found
was (a, b, c, e, e). One can see that the word (a, b, c, e) is a loop in the DFA. Hence we can suspect that this
could be a “faulty flow”. Checking the words wn = (a, b, c, e)n(e) for n 2 [1..100], we observed that for any
n 2 [1..100] the word wn was in the RNN language but not in the specification.

Fig. 2. Faulty Flow in DFA extracted through PDV

0 1

2 3 4

e

a, c b, d

a

b, c, d, e
e

b, c, d

a

b

a, c, d, e

a, c

b, d, e

To automate the reasoning above, we did the following: Given an RNN R, a specification A, the extracted
DFA H, and the counter example w:

1. Build the cross product DFA: A⇥ = A⇥H.

2. For every prefix w1 of the counter example w = w1w2, denote by sw1 the state to which the prefix w1

leads in A⇥. For any loop ` starting from sw1 , check if wf
n = w1`nw2 is a counter example for n 2 [1...100].

3. If wf
n is a counter example for more than 20 times, declare “found a faulty flow”.

Using this procedure, we managed to find faulty flows in 81/109 of the counterexamples that were found by
PDV.

RNNs Identifying Contact Sequences. Contact tracing [13] has proven to be increasingly effective in curbing
the spread of infectious diseases. In particular, analyzing contact sequences—sequences of individuals who

9

Experimental results

Checked on 30 DFAs / RNNs and 138 specifications:

Table 1. Experimental results

Type Avg time (s) Avg len # Mistakes Avg MQs

SMC 92 111 122 286063
AAMC 444 7 30 3701916
PDV 21 11 109 28318

Mistakes is the number of random instances for which a mistake was found, and (iv) Avg MQs is the average
number of membership queries asked to the RNN.

Note that not only is PDV faster and finds more errors than AAMC, the average number of states of the
final DFA is also much smaller: 26 states with PDV and 319 with AAMC.

Comparing PDV to SMC, it is 4.5 times faster and it asked 10 times less MQs from the RNN, even though
it found a little less mistakes. The time difference can become even more apparent if PDV was implemented
in something other than Python. Another observation is that the length of the counter examples are much
smaller in PDV.

Faulty Flows. One of the advantages of extracting DFAs in order to detect mistakes in a given RNN is the
possibility to find not only one mistake but a “faulty flow”. For example, Figure 2 shows one DFA extracted
with PDV, based on which we found a mistake in the corresponding RNN. The counter example we found
was (a, b, c, e, e). One can see that the word (a, b, c, e) is a loop in the DFA. Hence we can suspect that this
could be a “faulty flow”. Checking the words wn = (a, b, c, e)n(e) for n 2 [1..100], we observed that for any
n 2 [1..100] the word wn was in the RNN language but not in the specification.

Fig. 2. Faulty Flow in DFA extracted through PDV

0 1

2 3 4

e

a, c b, d

a

b, c, d, e
e

b, c, d

a

b

a, c, d, e

a, c

b, d, e

To automate the reasoning above, we did the following: Given an RNN R, a specification A, the extracted
DFA H, and the counter example w:

1. Build the cross product DFA: A⇥ = A⇥H.

2. For every prefix w1 of the counter example w = w1w2, denote by sw1 the state to which the prefix w1

leads in A⇥. For any loop ` starting from sw1 , check if wf
n = w1`nw2 is a counter example for n 2 [1...100].

3. If wf
n is a counter example for more than 20 times, declare “found a faulty flow”.

Using this procedure, we managed to find faulty flows in 81/109 of the counterexamples that were found by
PDV.

RNNs Identifying Contact Sequences. Contact tracing [13] has proven to be increasingly effective in curbing
the spread of infectious diseases. In particular, analyzing contact sequences—sequences of individuals who

9

PDV detected "faulty flows"
in 81/ 109 of the counterexamples

Table 1. Experimental results

Type Avg time (s) Avg len # Mistakes Avg MQs

SMC 92 111 122 286063
AAMC 444 7 30 3701916
PDV 21 11 109 28318

Mistakes is the number of random instances for which a mistake was found, and (iv) Avg MQs is the average
number of membership queries asked to the RNN.

Note that not only is PDV faster and finds more errors than AAMC, the average number of states of the
final DFA is also much smaller: 26 states with PDV and 319 with AAMC.

Comparing PDV to SMC, it is 4.5 times faster and it asked 10 times less MQs from the RNN, even though
it found a little less mistakes. The time difference can become even more apparent if PDV was implemented
in something other than Python. Another observation is that the length of the counter examples are much
smaller in PDV.

Faulty Flows. One of the advantages of extracting DFAs in order to detect mistakes in a given RNN is the
possibility to find not only one mistake but a “faulty flow”. For example, Figure 2 shows one DFA extracted
with PDV, based on which we found a mistake in the corresponding RNN. The counter example we found
was (a, b, c, e, e). One can see that the word (a, b, c, e) is a loop in the DFA. Hence we can suspect that this
could be a “faulty flow”. Checking the words wn = (a, b, c, e)n(e) for n 2 [1..100], we observed that for any
n 2 [1..100] the word wn was in the RNN language but not in the specification.

Fig. 2. Faulty Flow in DFA extracted through PDV

0 1

2 3 4

e

a, c b, d

a

b, c, d, e
e

b, c, d

a

b

a, c, d, e

a, c

b, d, e

To automate the reasoning above, we did the following: Given an RNN R, a specification A, the extracted
DFA H, and the counter example w:

1. Build the cross product DFA: A⇥ = A⇥H.

2. For every prefix w1 of the counter example w = w1w2, denote by sw1 the state to which the prefix w1

leads in A⇥. For any loop ` starting from sw1 , check if wf
n = w1`nw2 is a counter example for n 2 [1...100].

3. If wf
n is a counter example for more than 20 times, declare “found a faulty flow”.

Using this procedure, we managed to find faulty flows in 81/109 of the counterexamples that were found by
PDV.

RNNs Identifying Contact Sequences. Contact tracing [13] has proven to be increasingly effective in curbing
the spread of infectious diseases. In particular, analyzing contact sequences—sequences of individuals who

9

Conclusion

Conclusion

1. Extraction of finite-state information from RNNs contributes to their
understanding and verification.

Conclusion

1. Extraction of finite-state information from RNNs contributes to their
understanding and verification.

2. Property-directed verification (PDV) is able to find short
counterexamples fast.

Conclusion

1. Extraction of finite-state information from RNNs contributes to their
understanding and verification.

2. Property-directed verification (PDV) is able to find short
counterexamples fast.

Conclusion and Outlook

1. Practical applications of PDV?

Conclusion

1. Extraction of finite-state information from RNNs contributes to their
understanding and verification.

2. Property-directed verification (PDV) is able to find short
counterexamples fast.

Conclusion and Outlook

1. Practical applications of PDV?

2. Verification of RNN-based agent environment systems?

Conclusion

1. Extraction of finite-state information from RNNs contributes to their
understanding and verification.

2. Property-directed verification (PDV) is able to find short
counterexamples fast.

Conclusion and Outlook

1. Practical applications of PDV?

2. Verification of RNN-based agent environment systems?

3. Going beyond regular specifications: Inference of context-
free languages.

Conclusion

1. Extraction of finite-state information from RNNs contributes to their
understanding and verification.

2. Property-directed verification (PDV) is able to find short
counterexamples fast.

Conclusion and Outlook

1. Practical applications of PDV?

2. Verification of RNN-based agent environment systems?

3. Going beyond regular specifications: Inference of context-
free languages.

Thank you!

