New Challenges for Automata Learning Property-Directed Verification of Recurrent Neural Networks

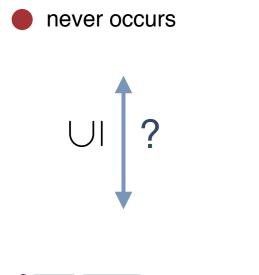
Benedikt Bollig CNRS, LSV, ENS Paris-Saclay, Université Paris-Saclay

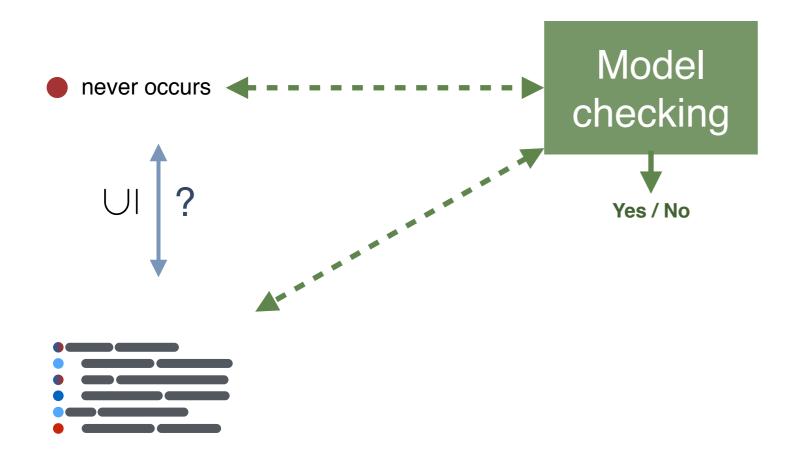
joint work with LeaRNNify team:

Benoît Barbot, Alain, Finkel, Serge Haddad, Igor Khmelnitsky, Daniel Neider, Martin Leucker, Rajarshi Roy, Lina Ye

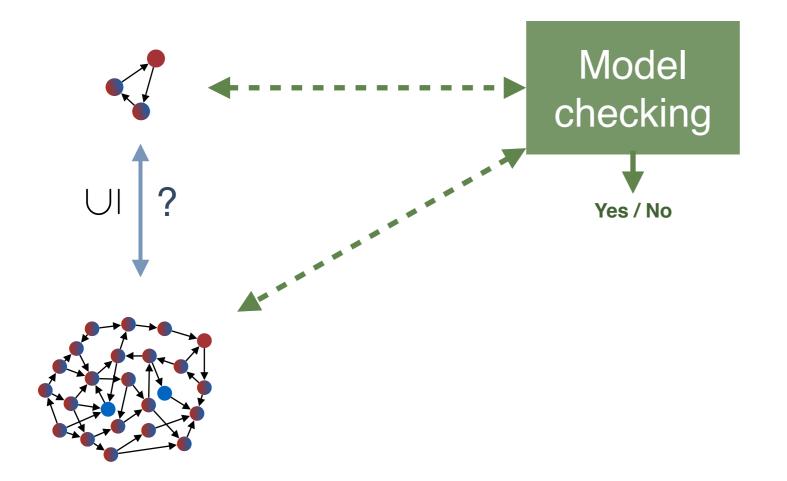
DATAIA Workshop "Safety & AI" September 23, 2020 CentraleSupélec

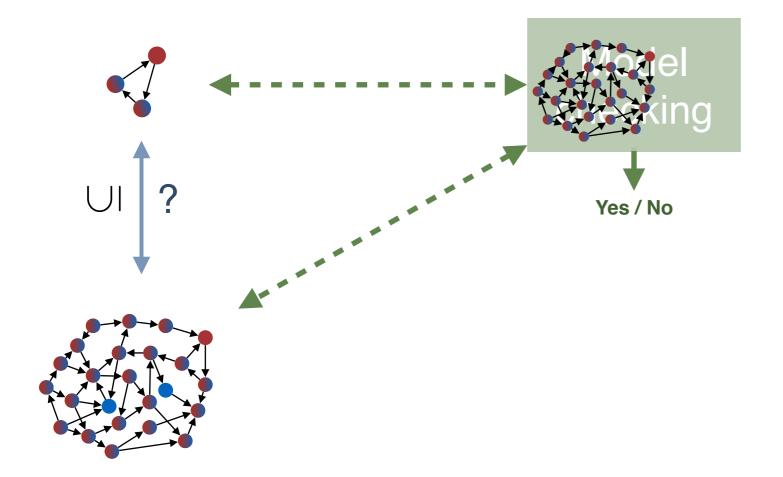
never occurs

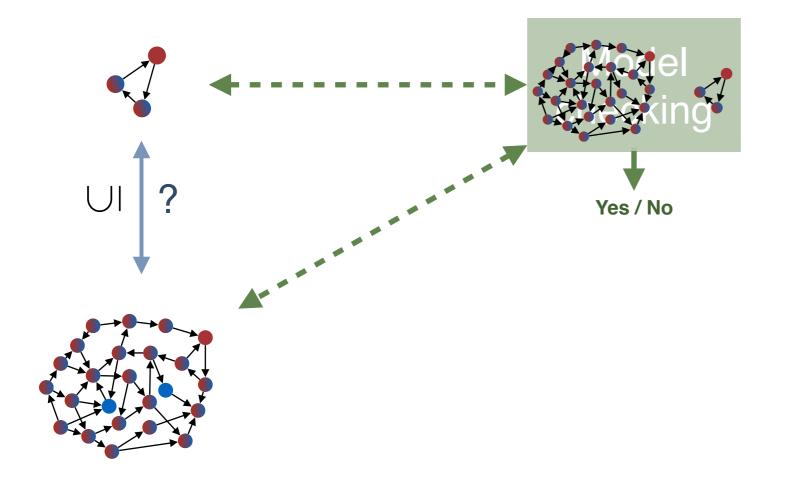


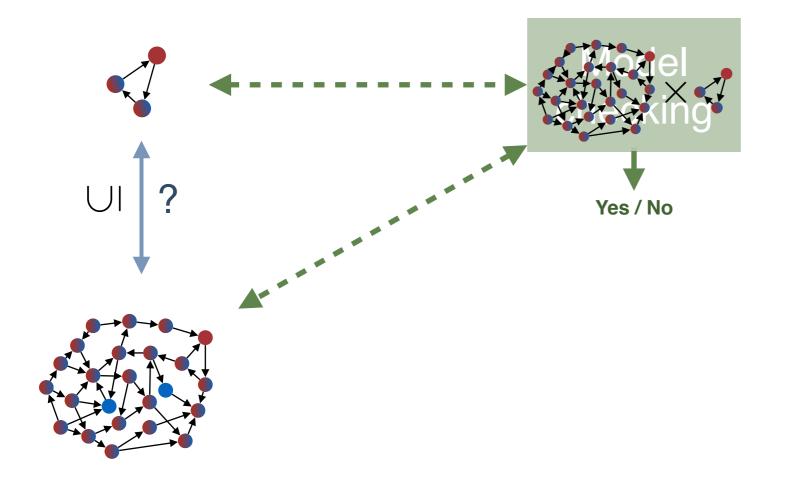


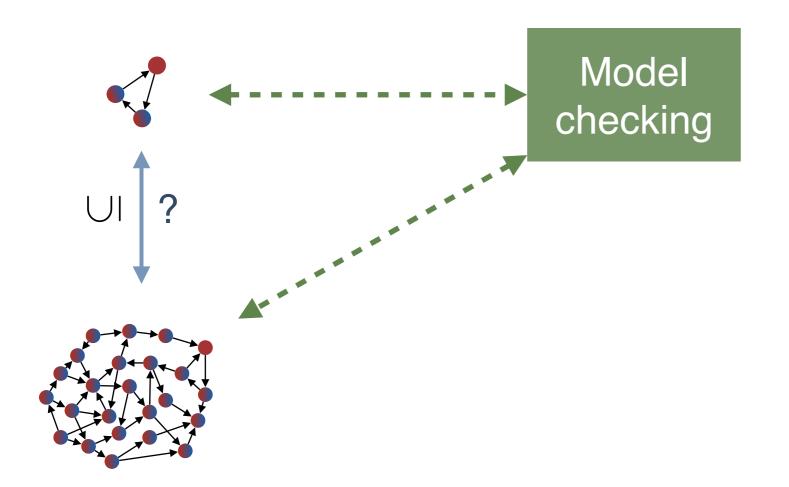


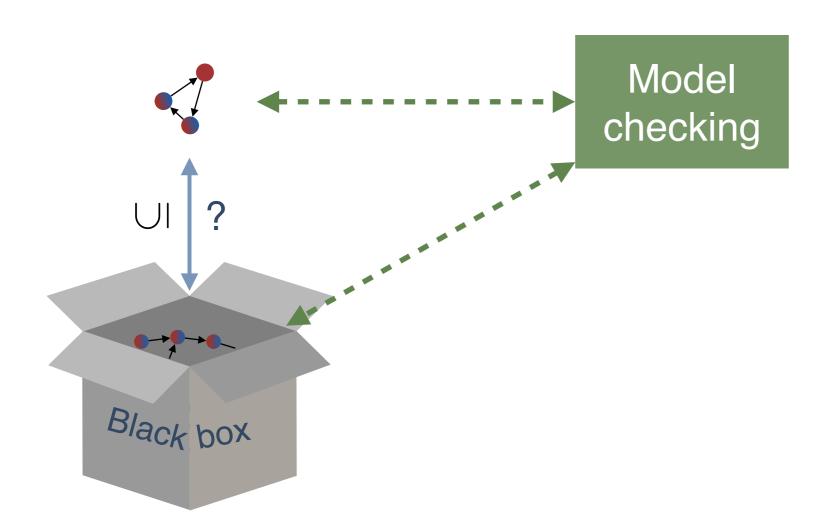


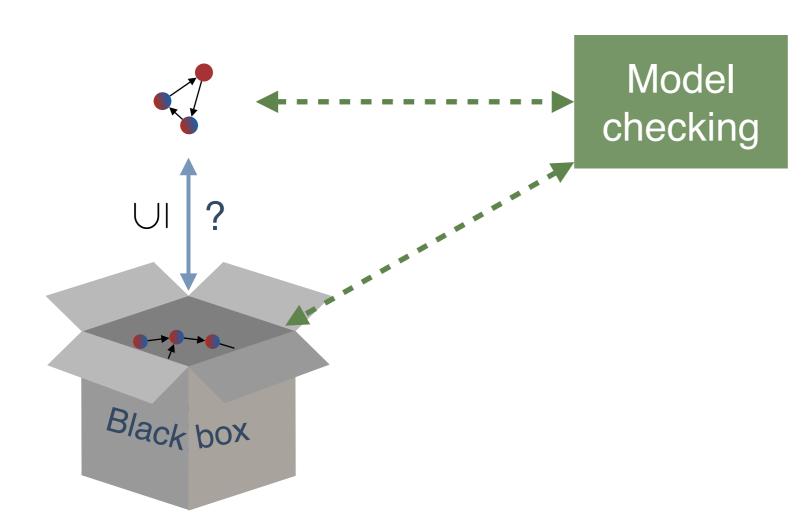




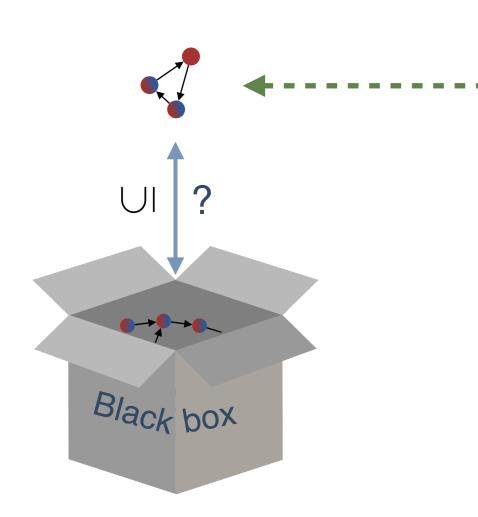








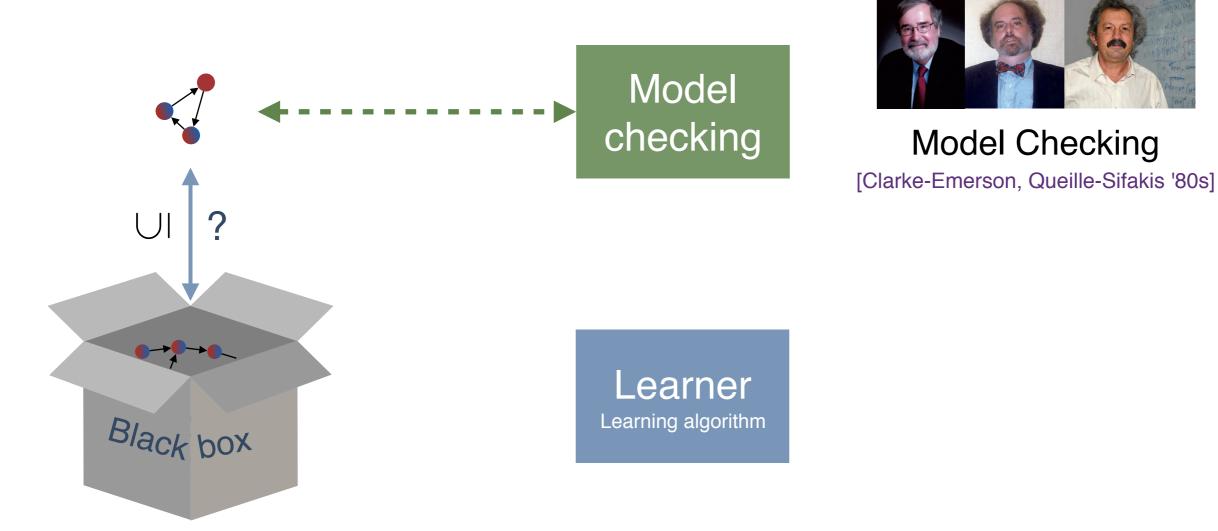
- legacy software
- code not open source
- third-party software
- embedded systems



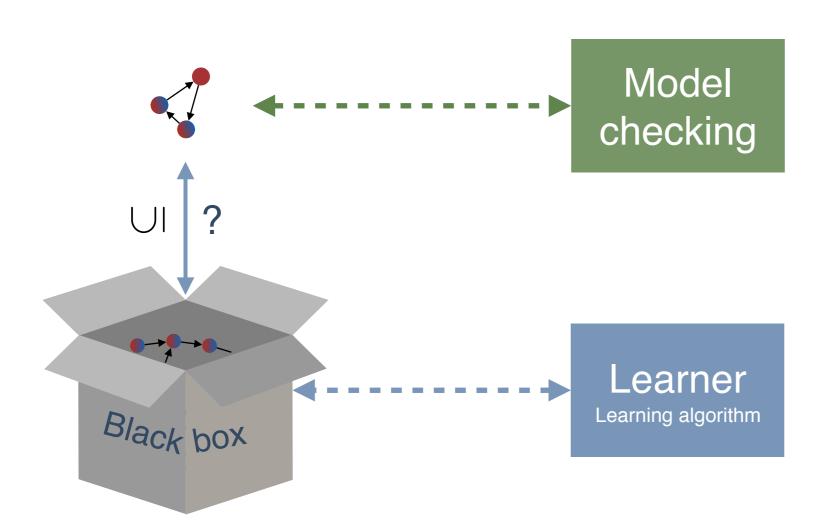
- legacy software
- code not open source
- third-party software
- embedded systems

Model

checking



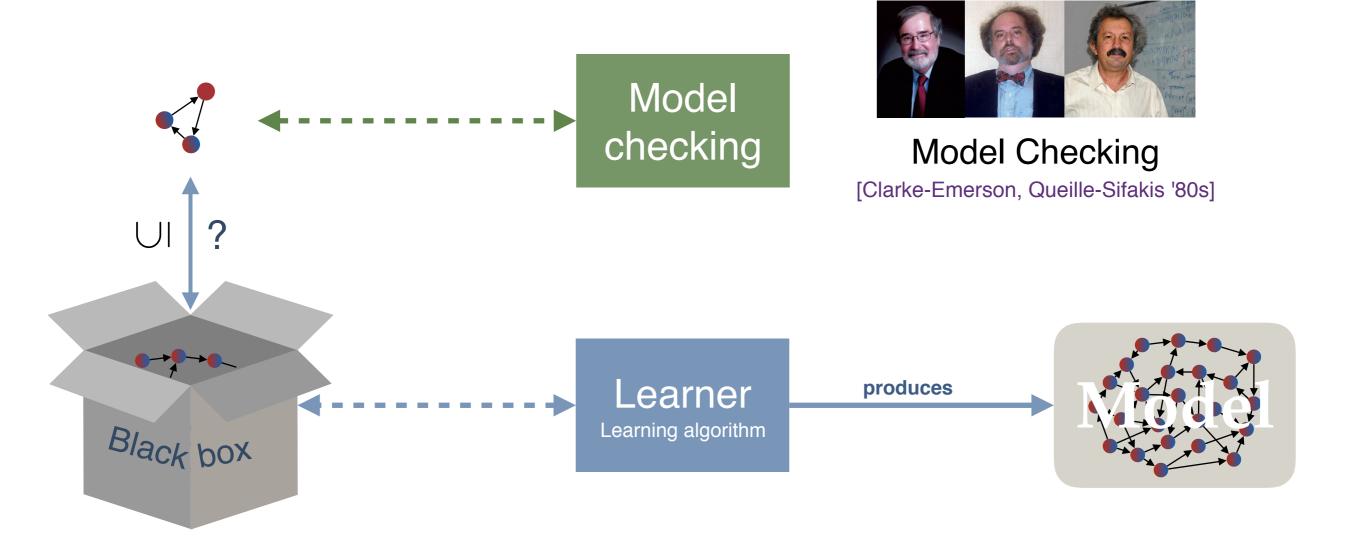
- legacy software
- code not open source
- third-party software
- embedded systems



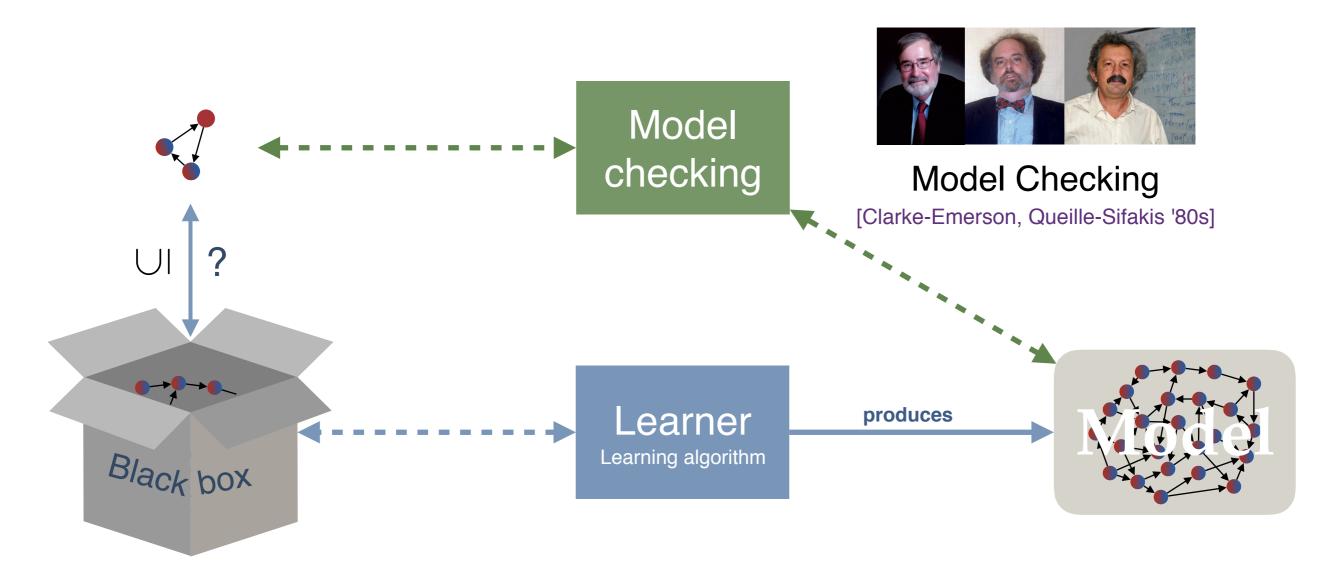
Model Checking

[Clarke-Emerson, Queille-Sifakis '80s]

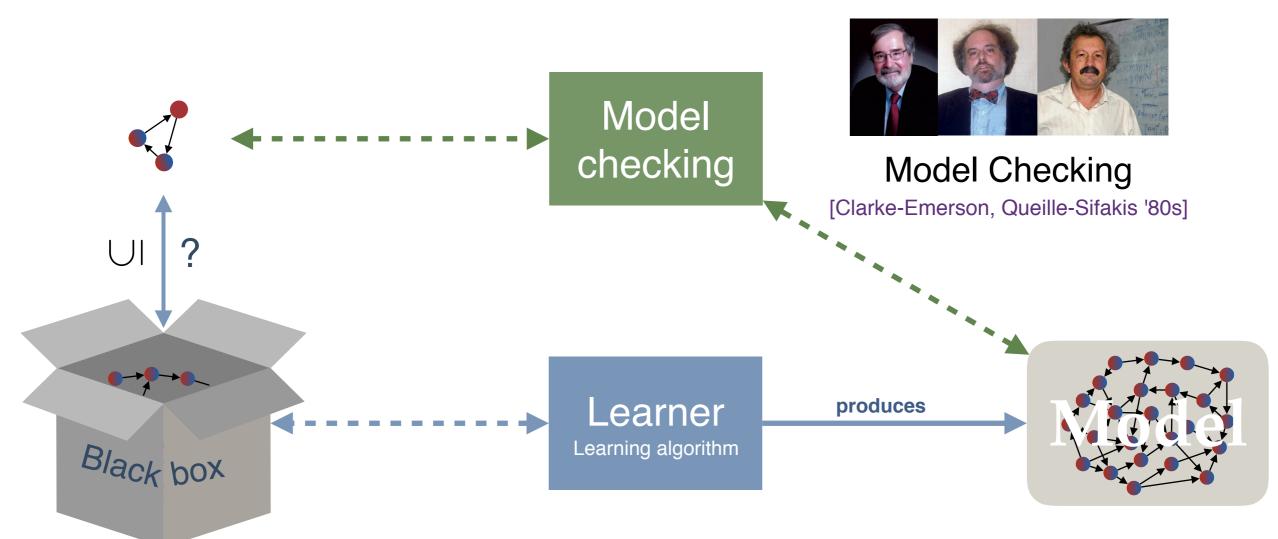
- legacy software
- code not open source
- third-party software
- embedded systems



- legacy software
- code not open source
- third-party software
- embedded systems



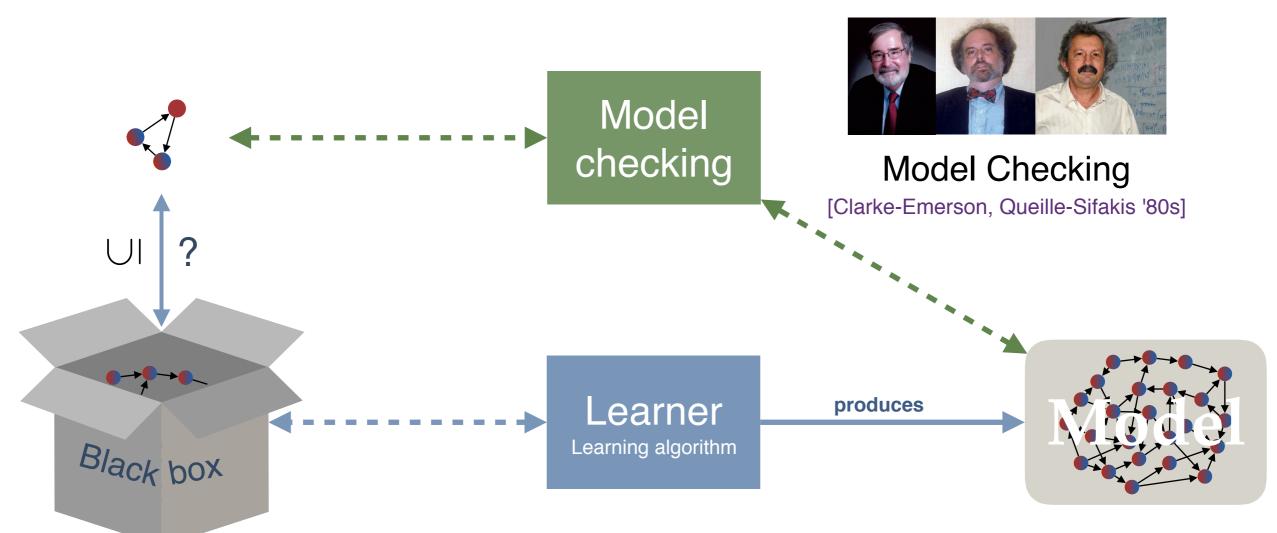
- legacy software
- code not open source
- third-party software
- embedded systems



- legacy software
- code not open source
- third-party software
- embedded systems

Inference/Model Learning

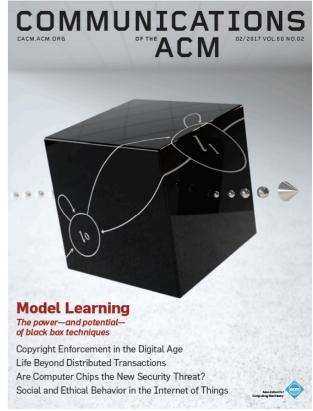
[Moore '50s, Angluin '80s]



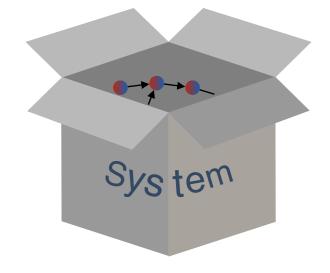
- legacy software
- code not open source
- third-party software
- embedded systems

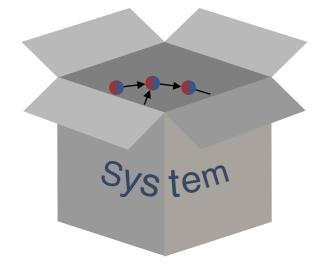
Inference/Model Learning

[Moore '50s, Angluin '80s]

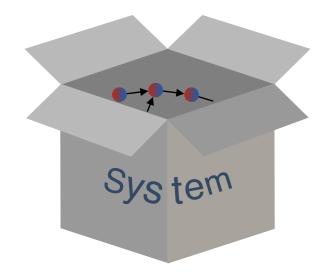


[F. Vaandrager 2017]



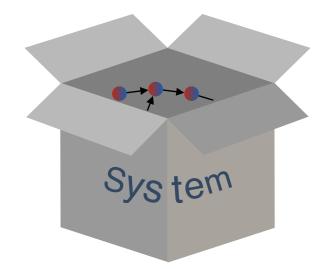


 $L = (a+b)^*b(a+b)$



 $L = (a+b)^*b(a+b)$

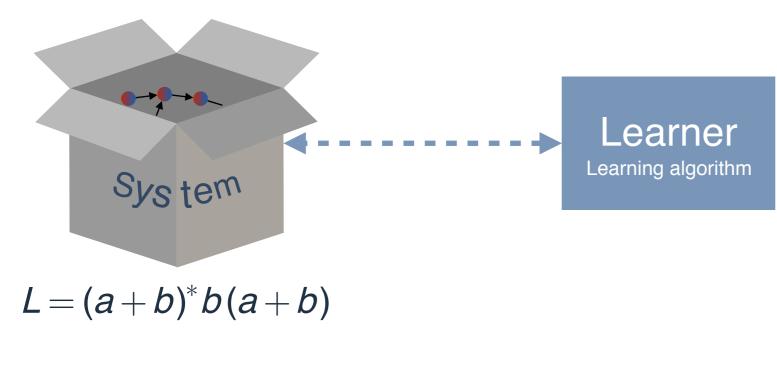
 $f_L: \Sigma^* \to \{0, 1\}$ $f_L(W) = 1 \text{ iff } W \in L$



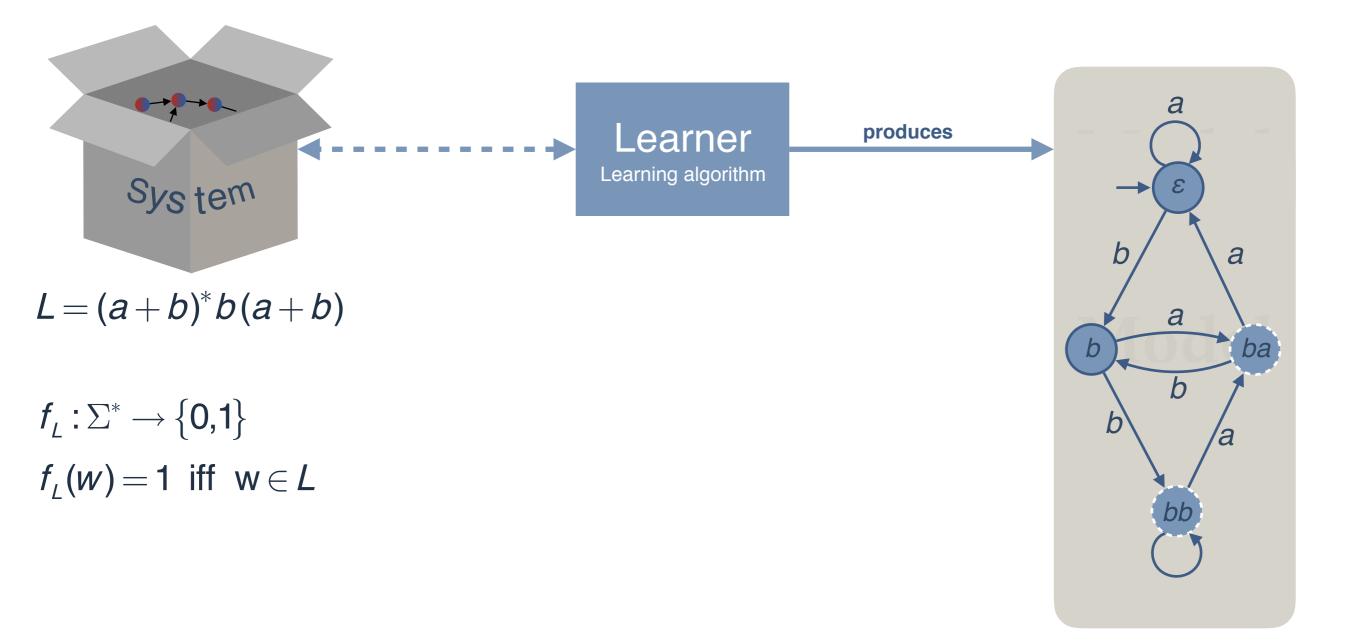
 $L = (a+b)^*b(a+b)$

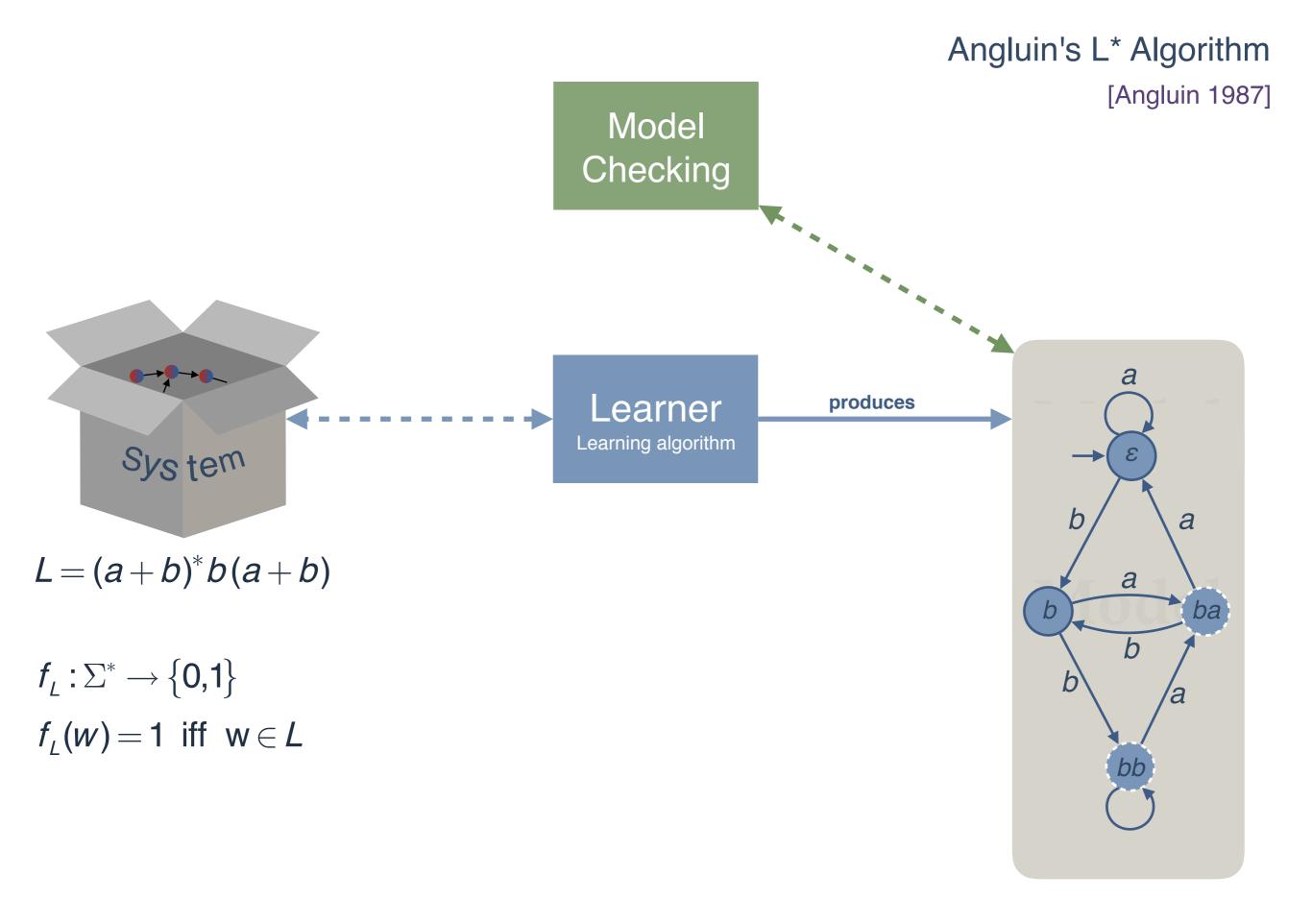
 $f_L: \Sigma^* \to \{0, 1\}$ $f_L(W) = 1 \text{ iff } W \in L$

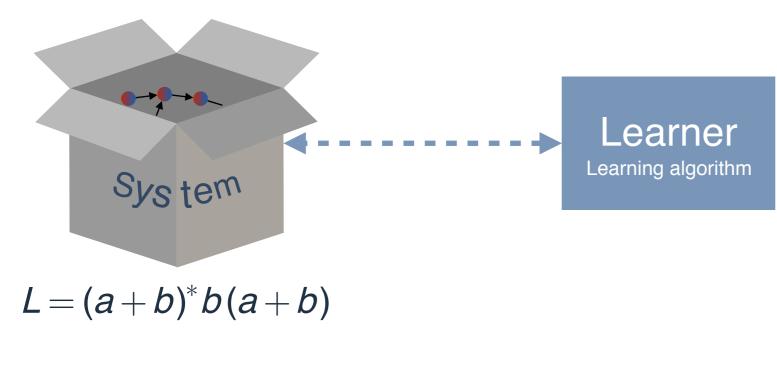
Learning algorithm



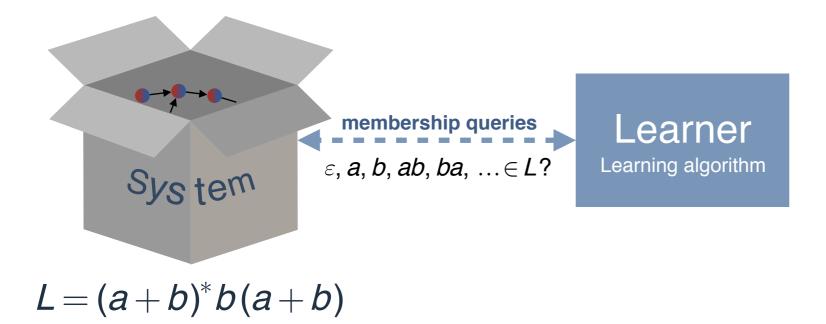
 $f_L: \Sigma^* \to \{0, 1\}$ $f_L(W) = 1 \text{ iff } W \in L$



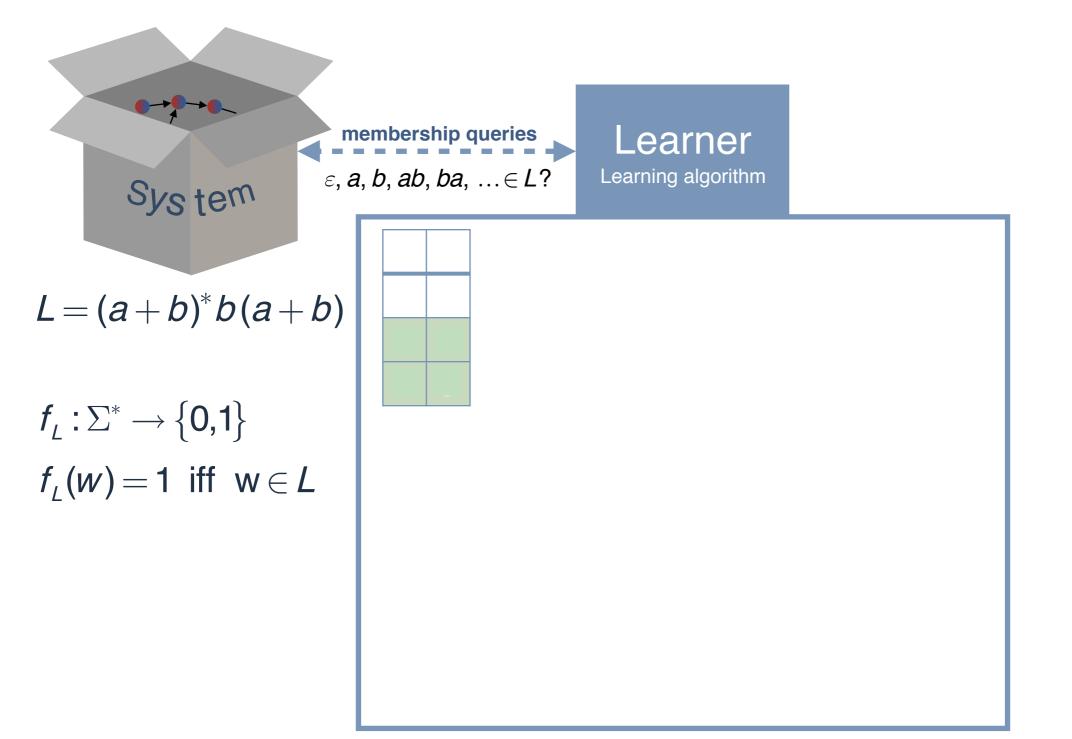


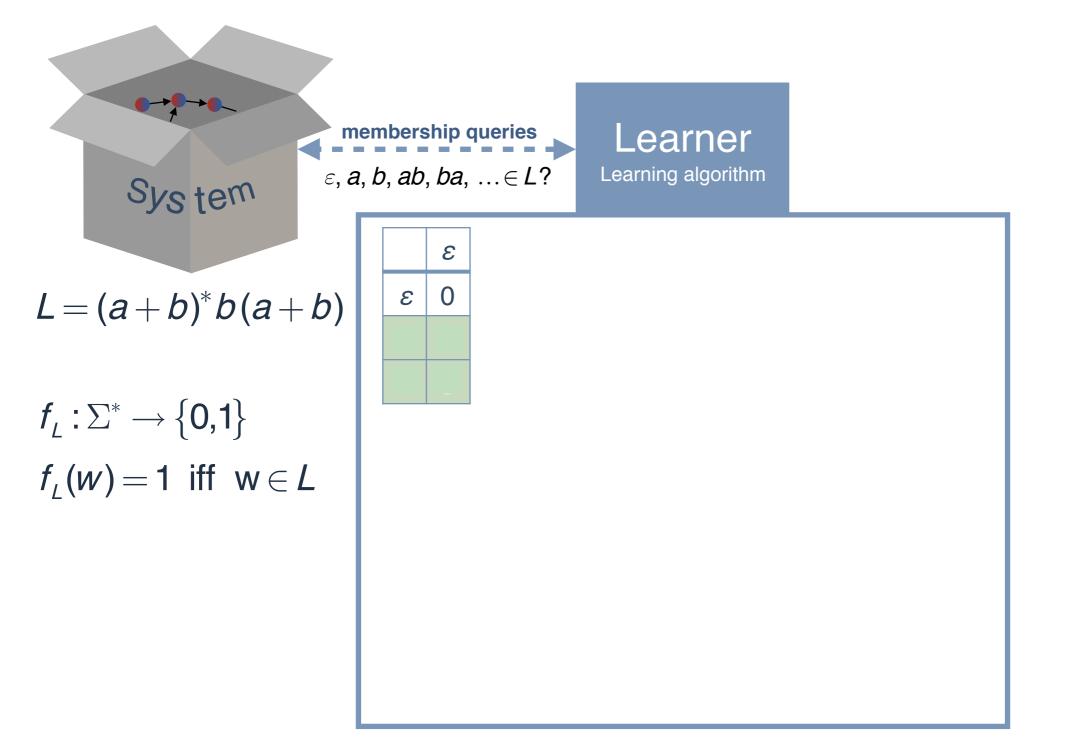


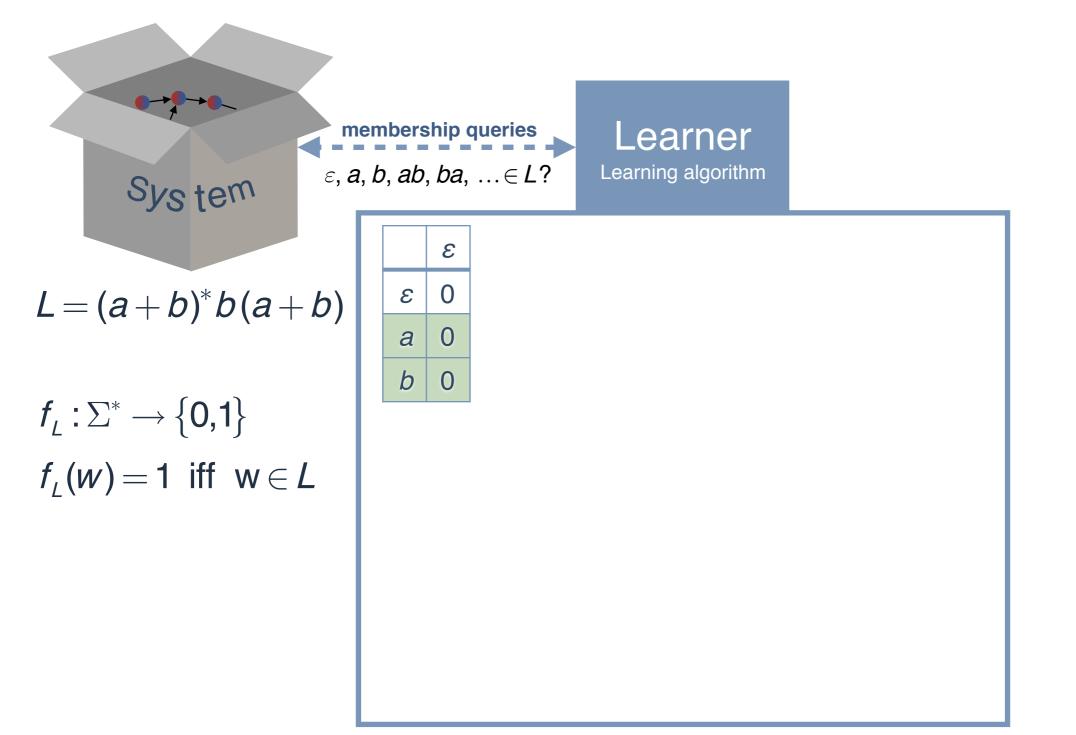
 $f_L: \Sigma^* \to \{0, 1\}$ $f_L(W) = 1 \text{ iff } W \in L$

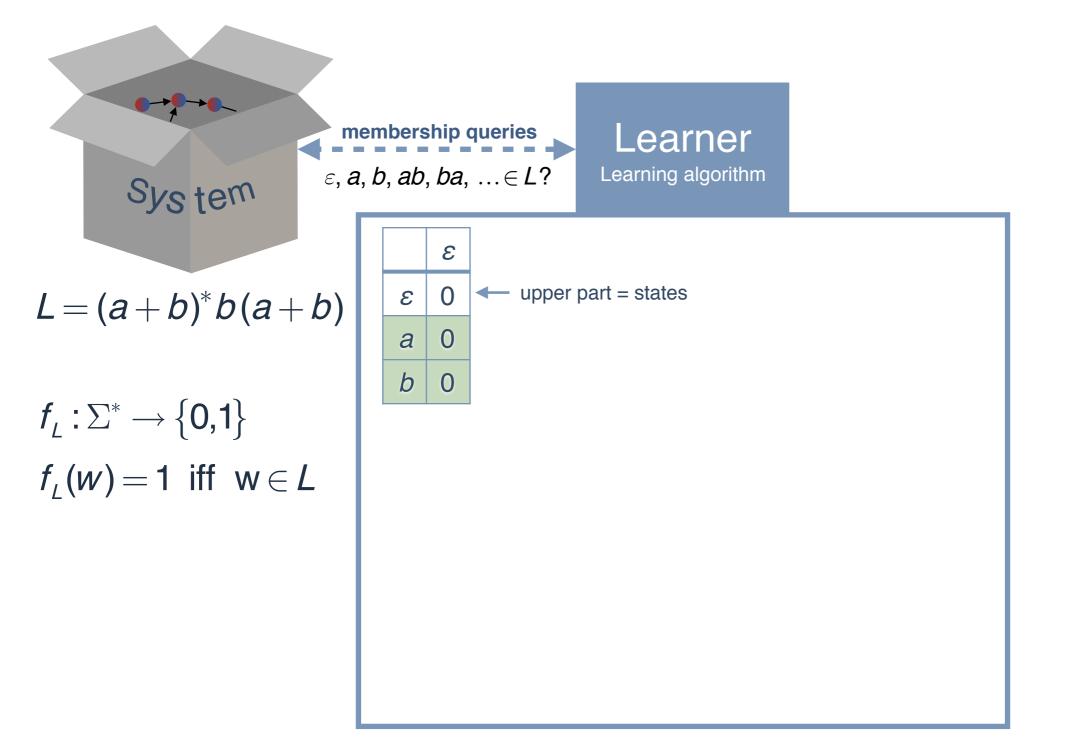


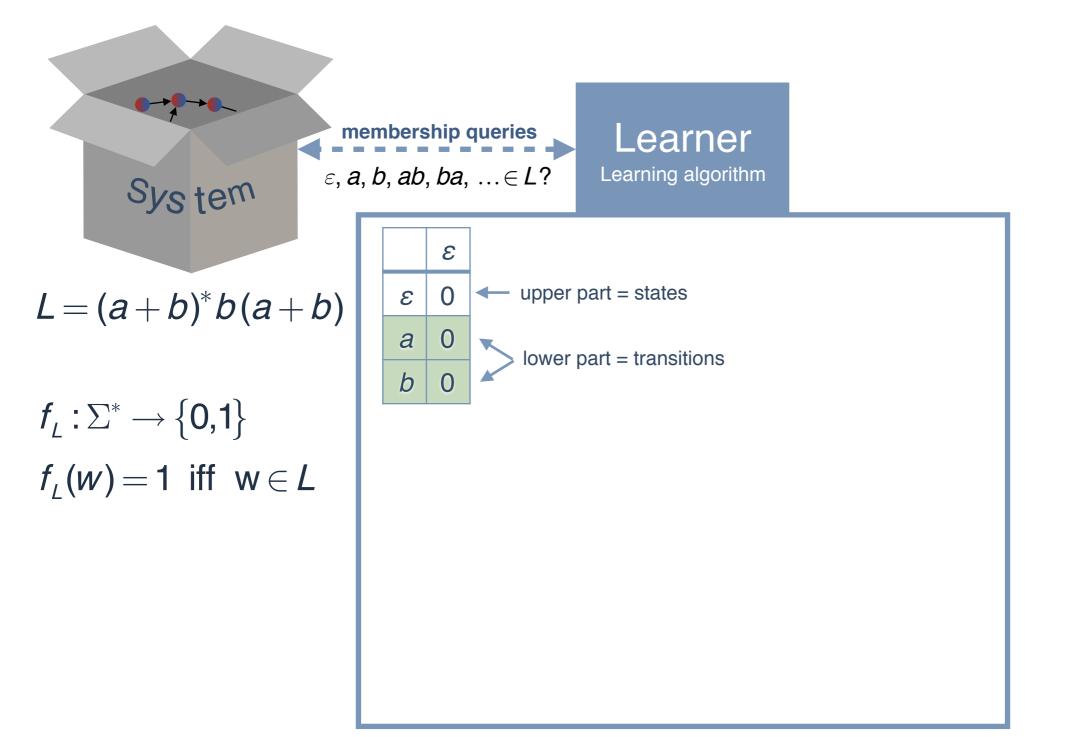
 $f_L: \Sigma^* \to \{0, 1\}$ $f_L(w) = 1 \text{ iff } w \in L$

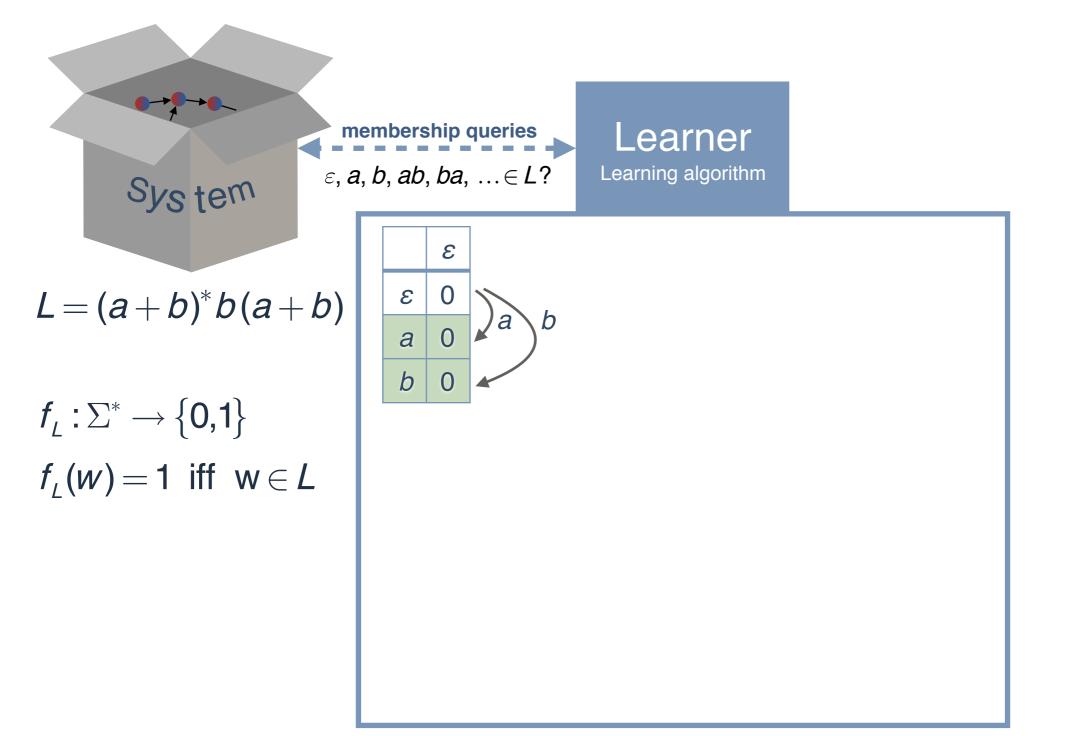


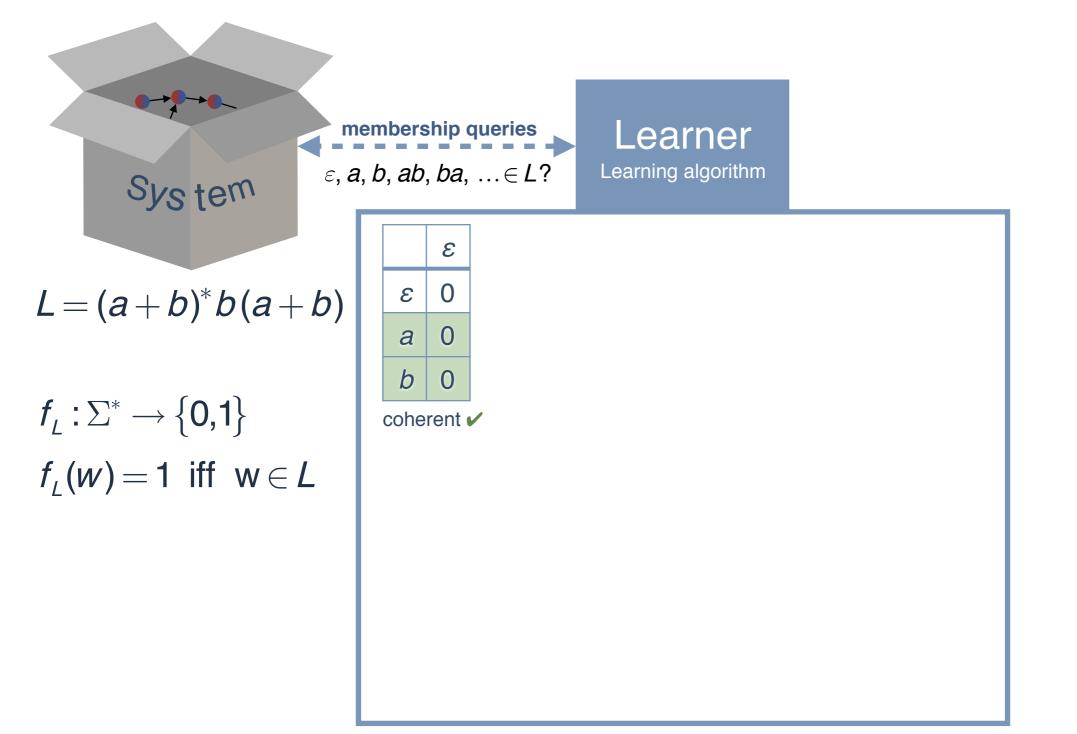




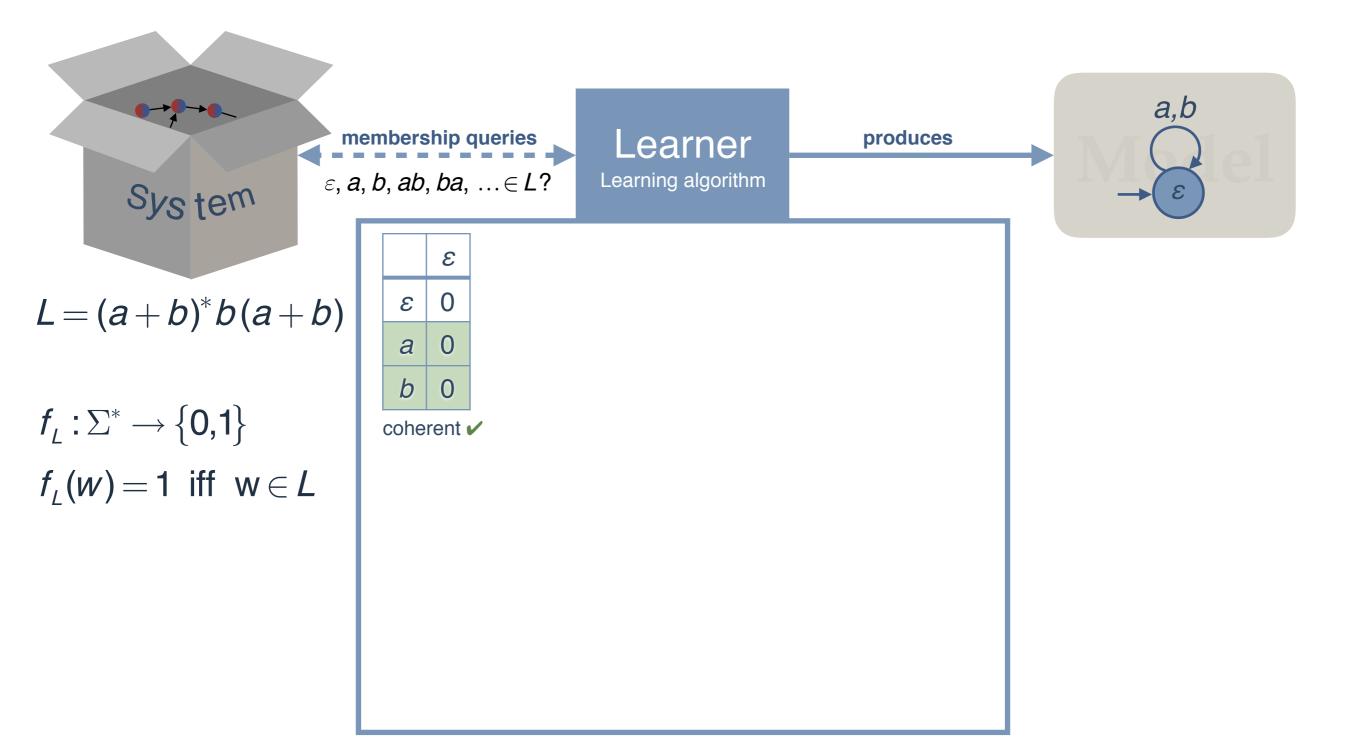


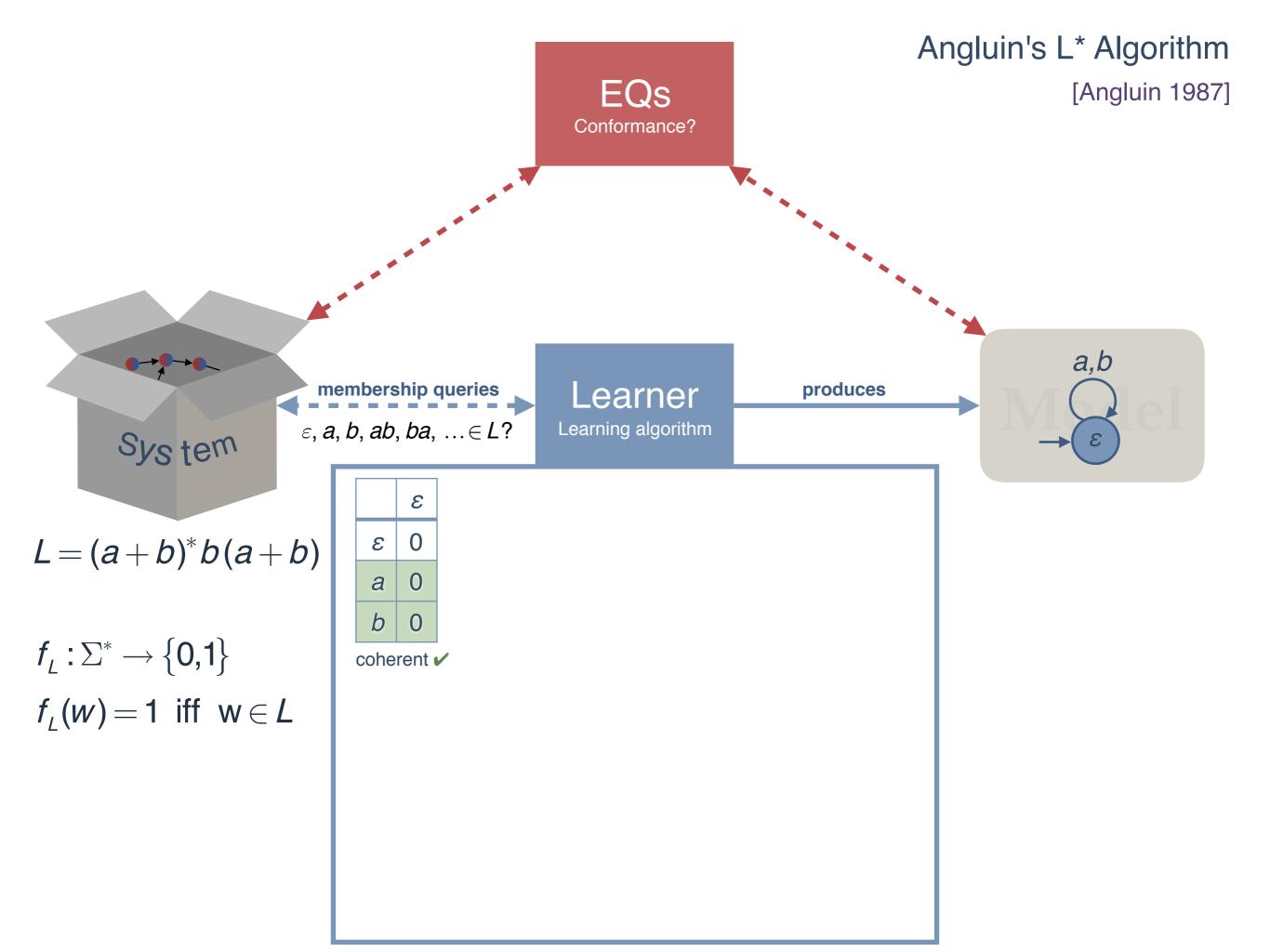


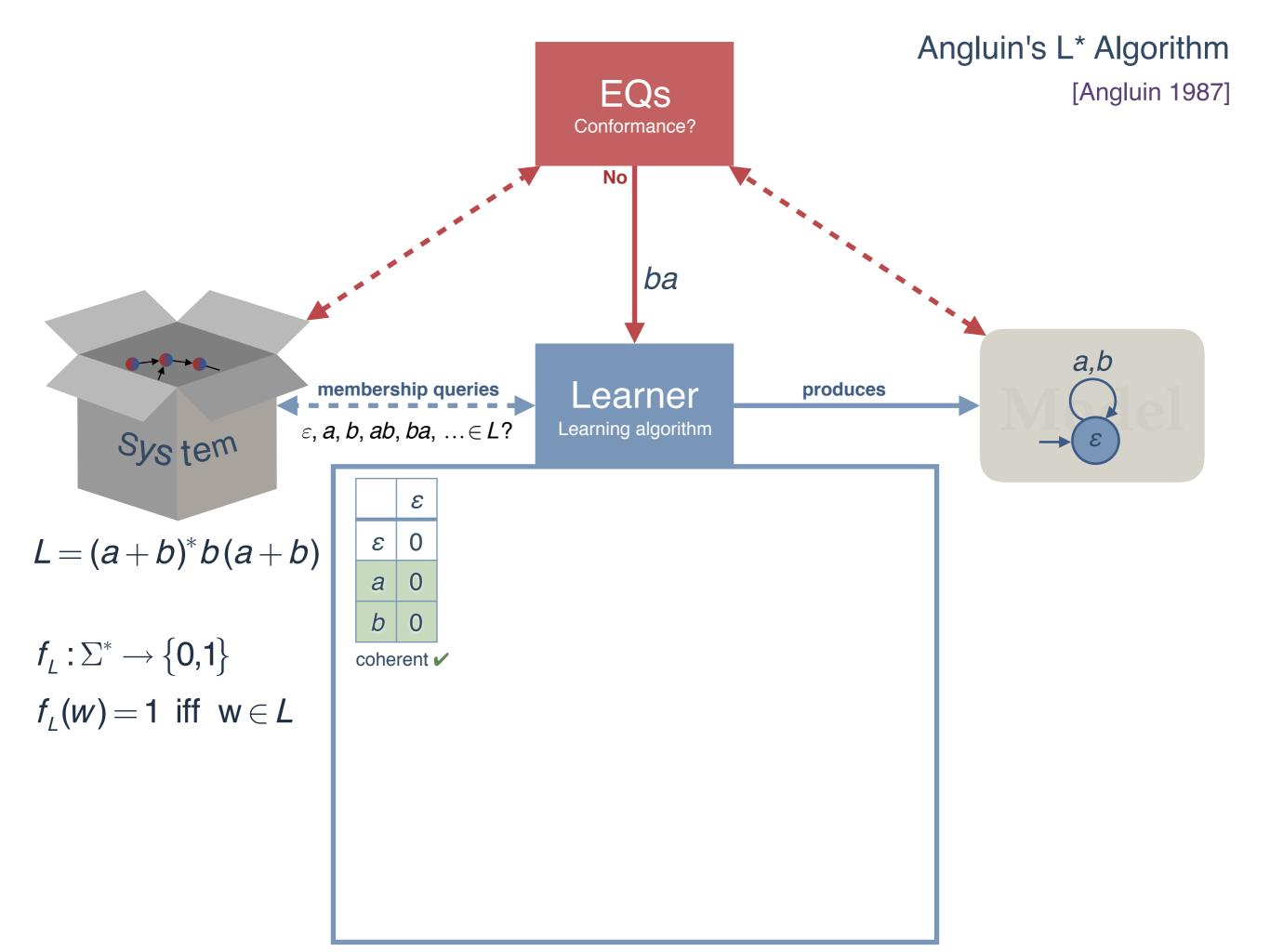


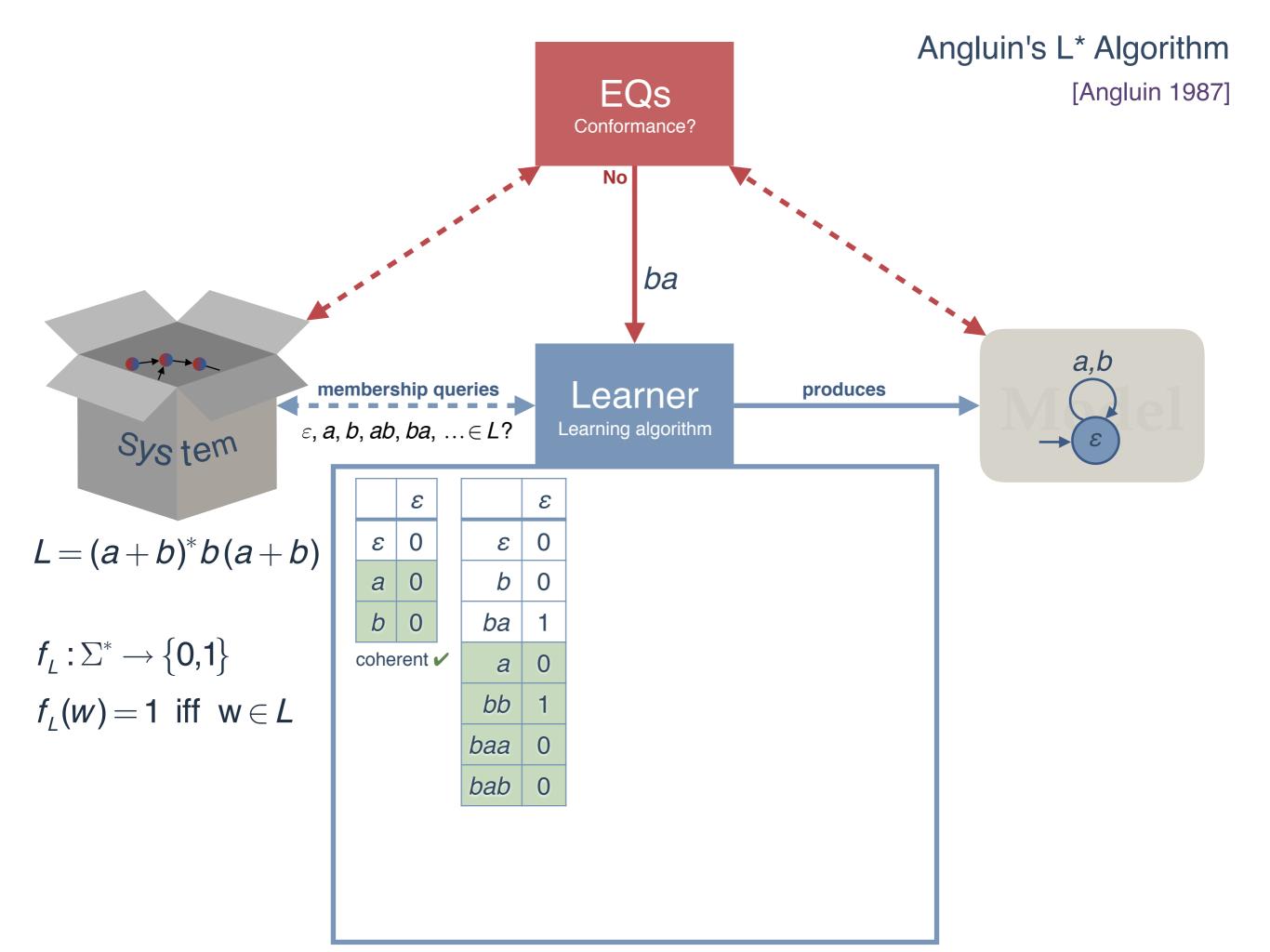


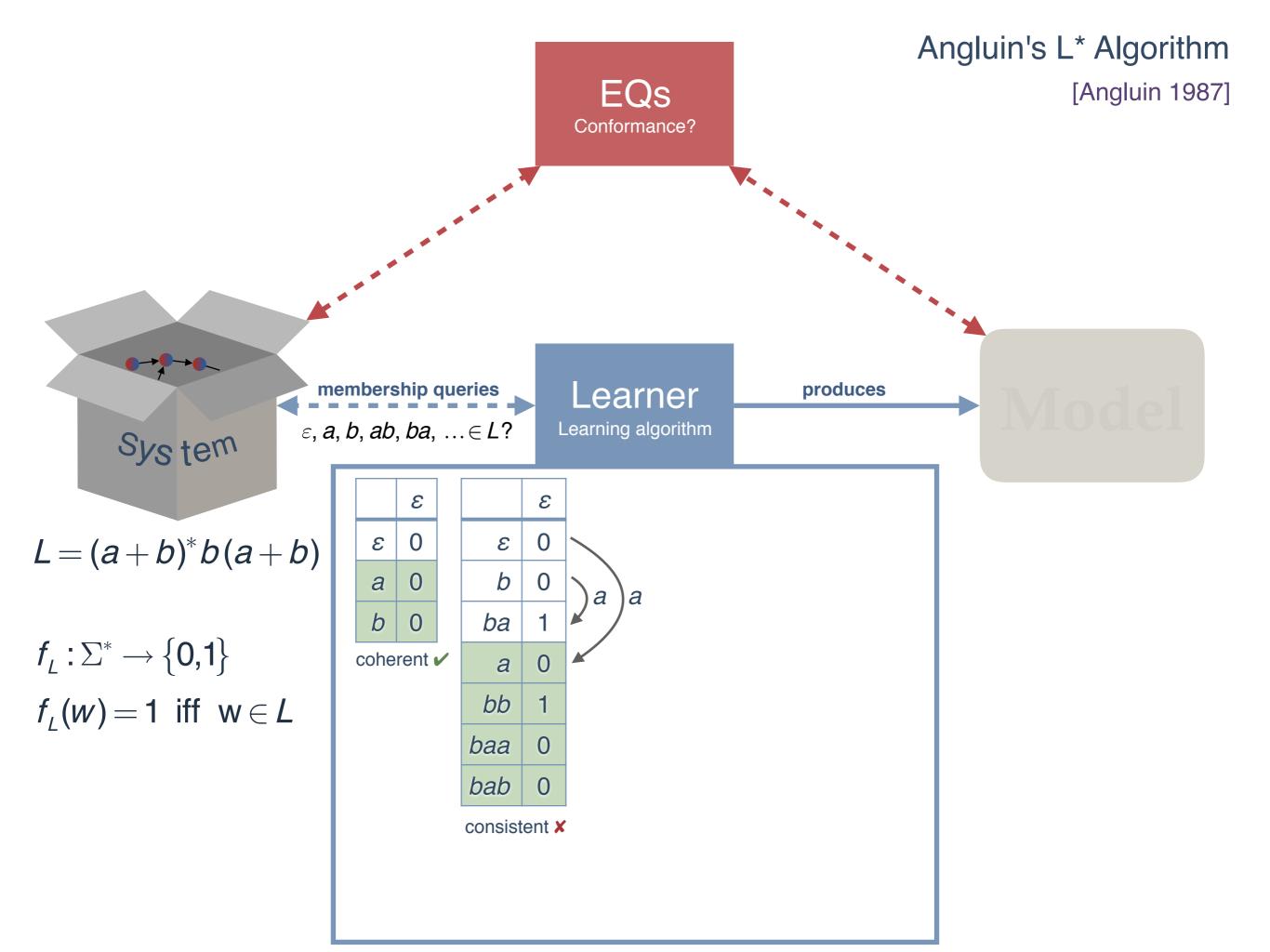
Angluin's L* Algorithm [Angluin 1987]

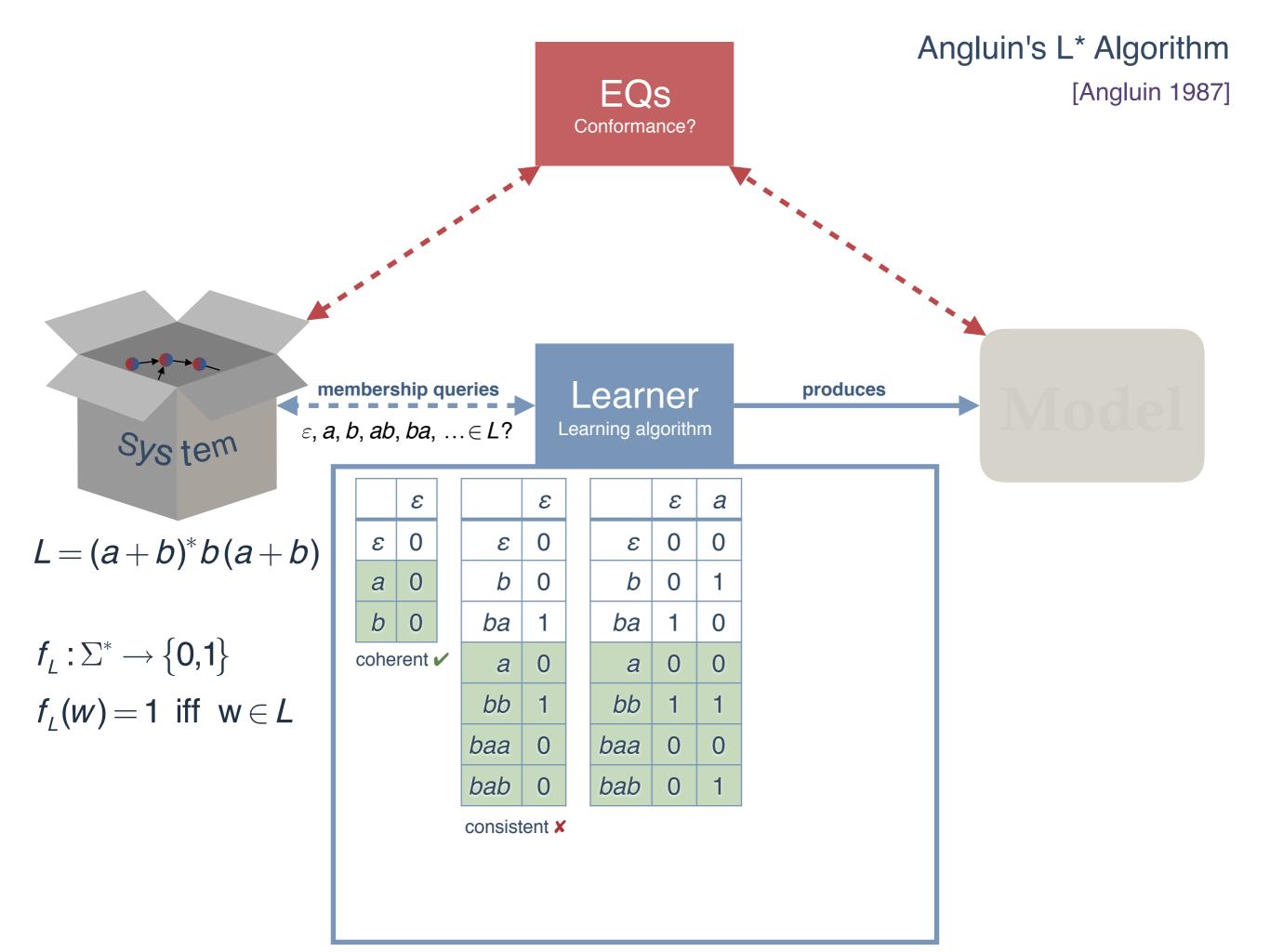


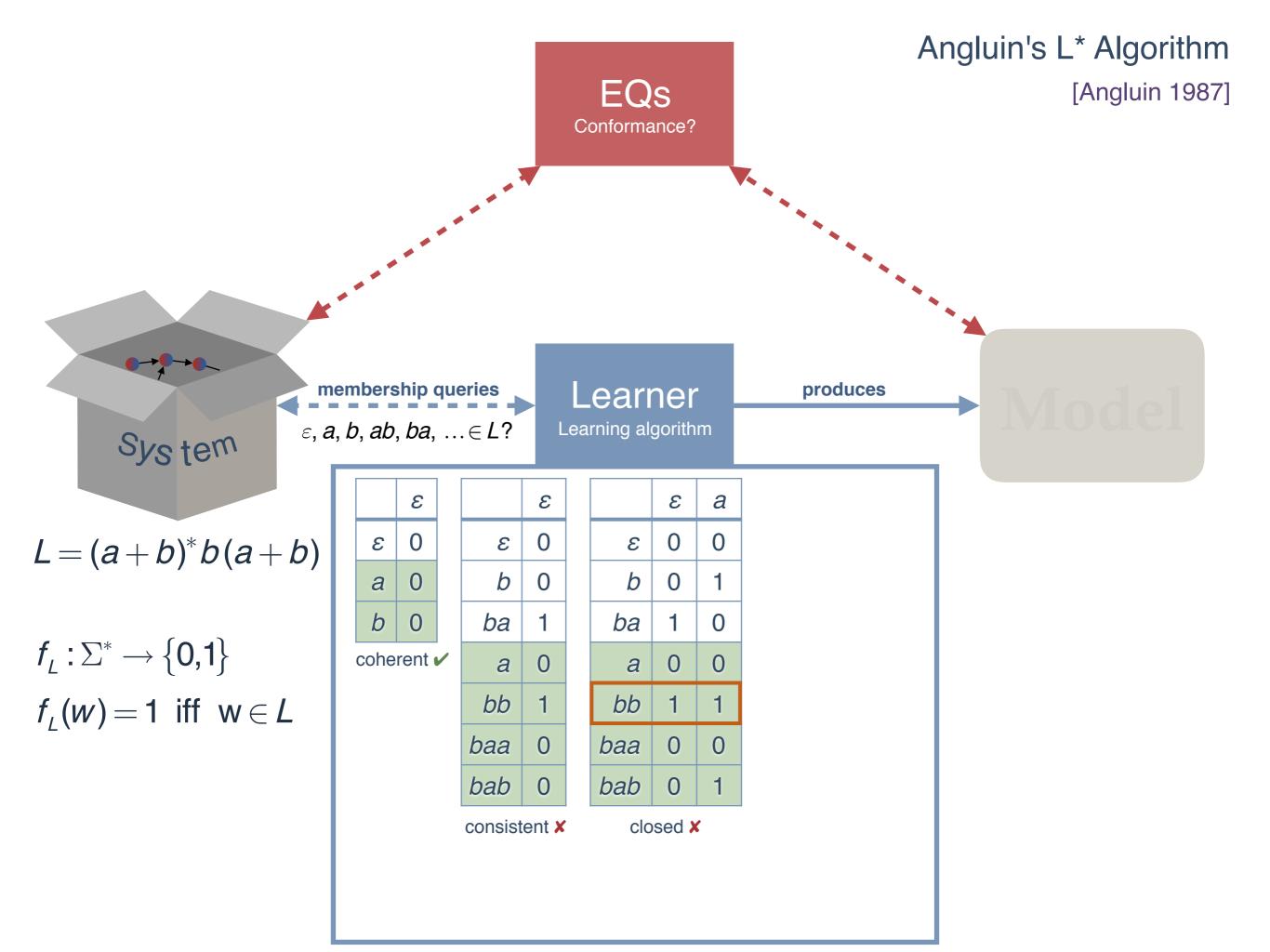


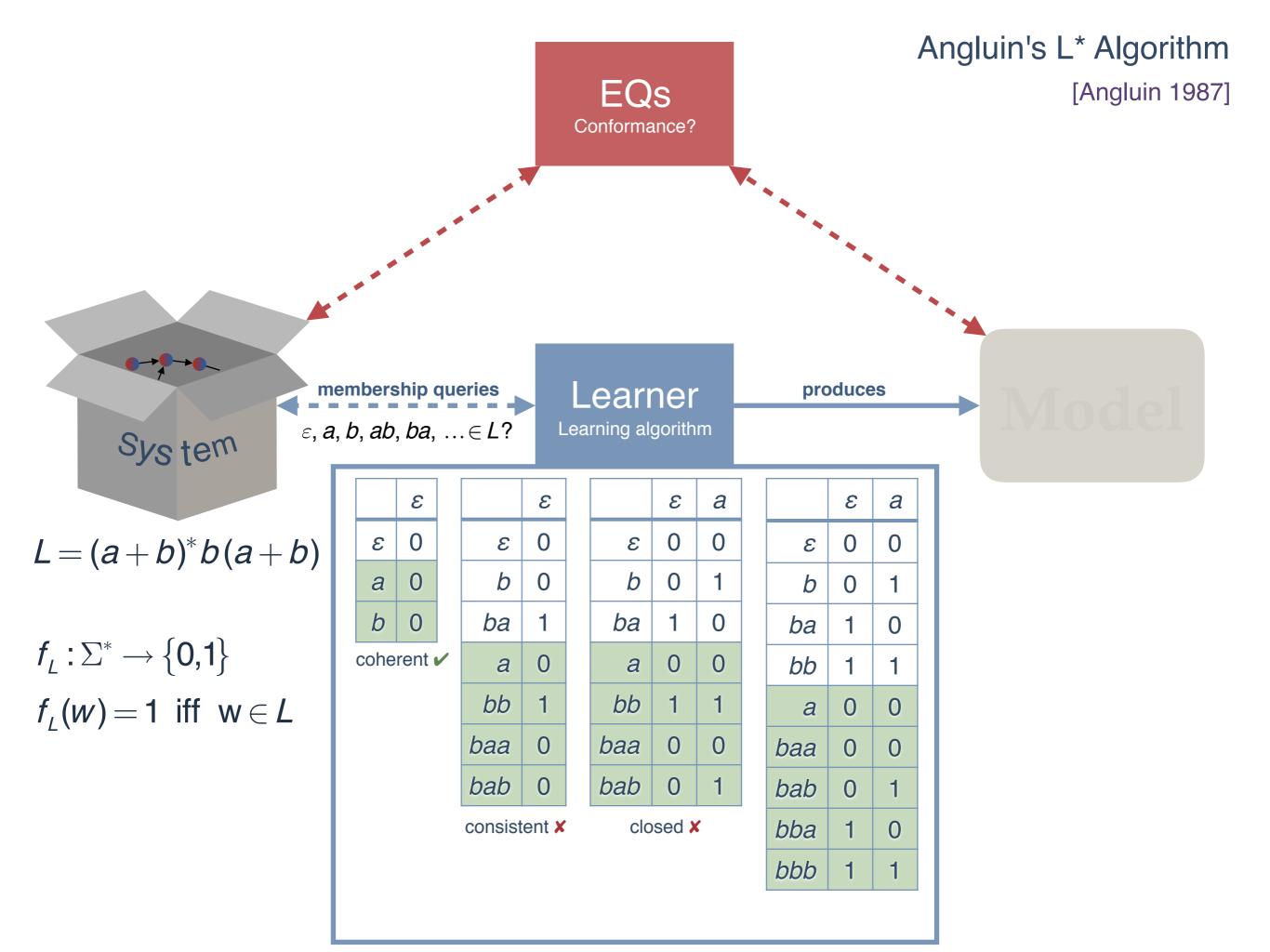


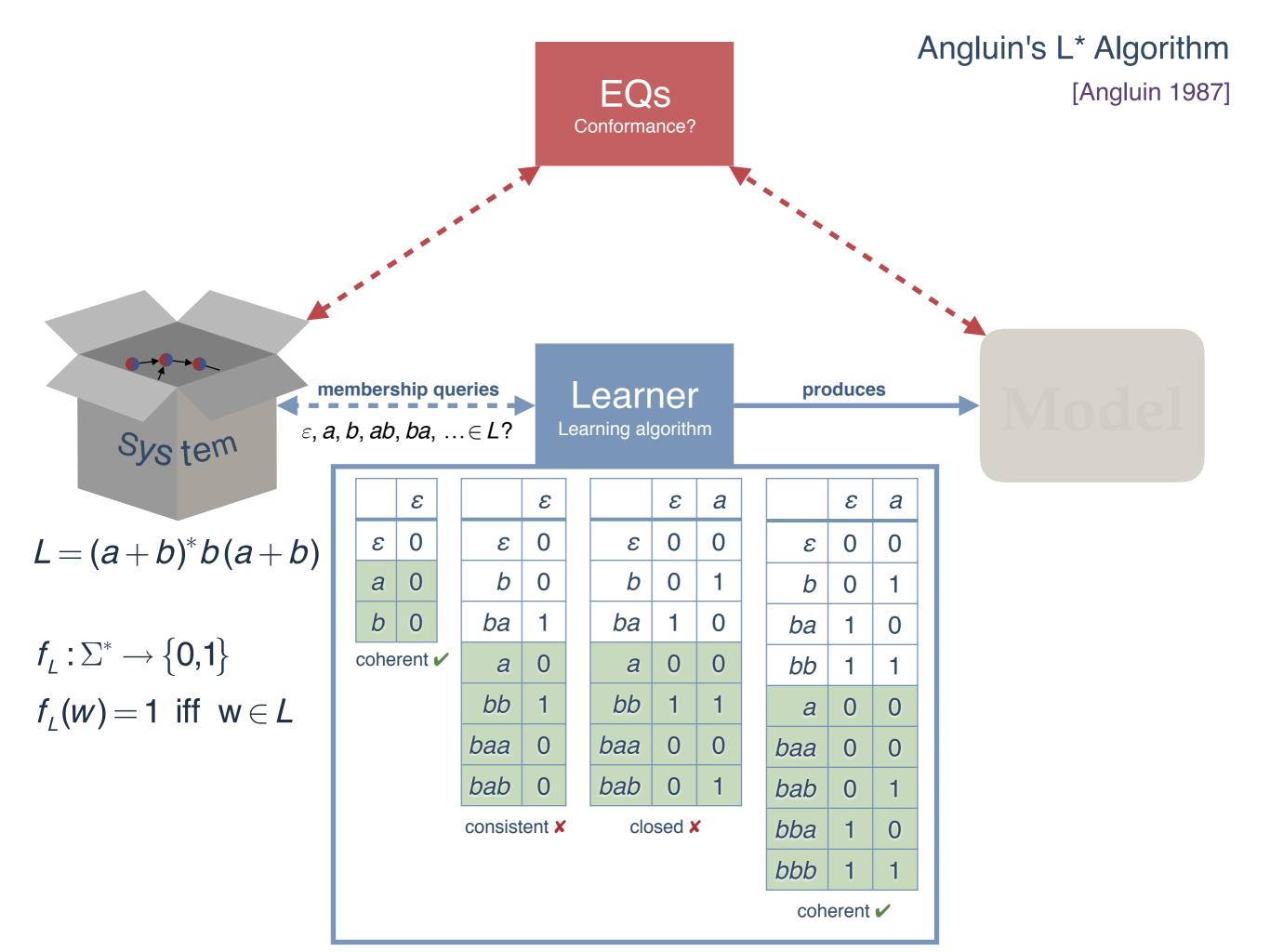


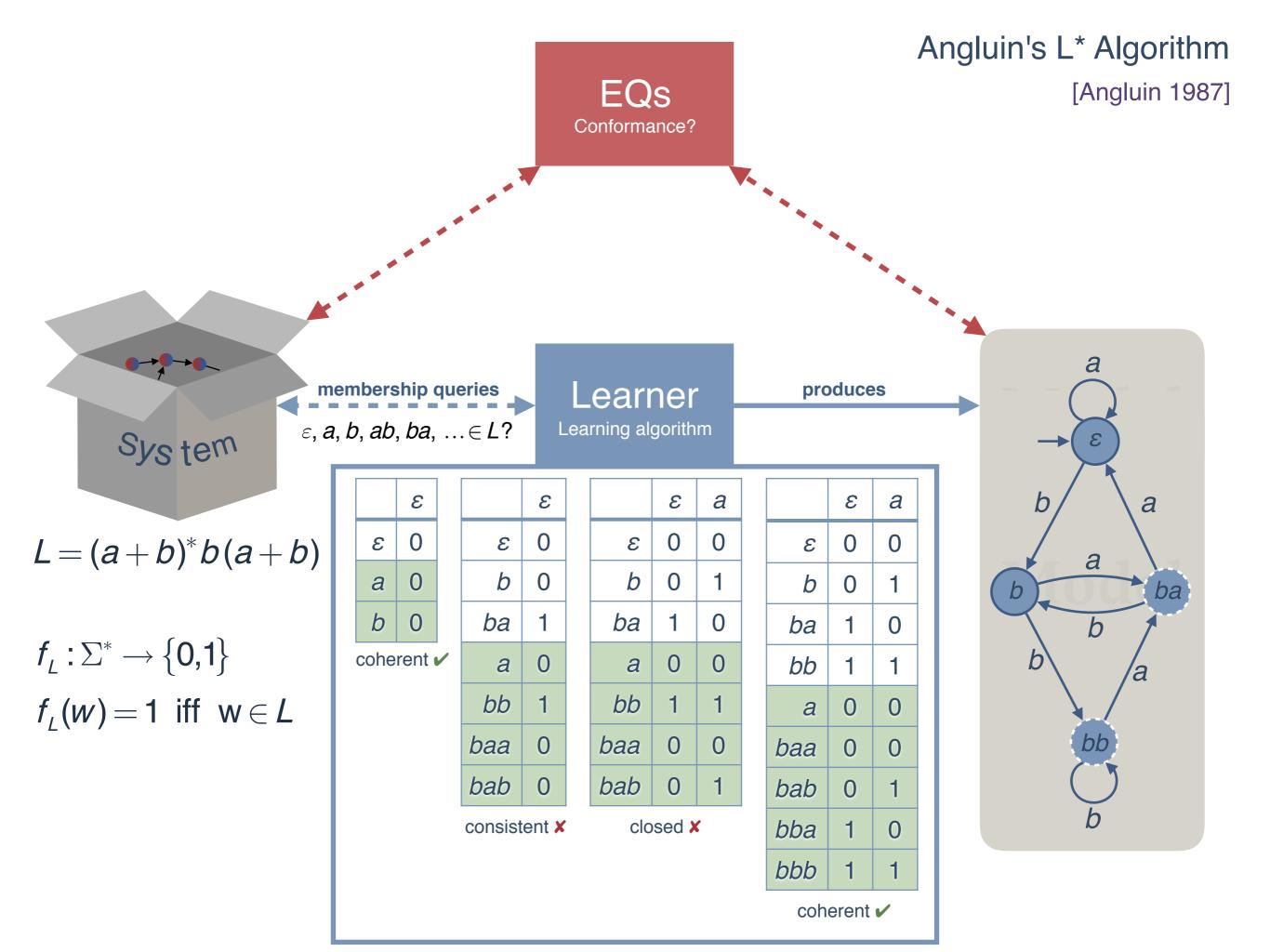


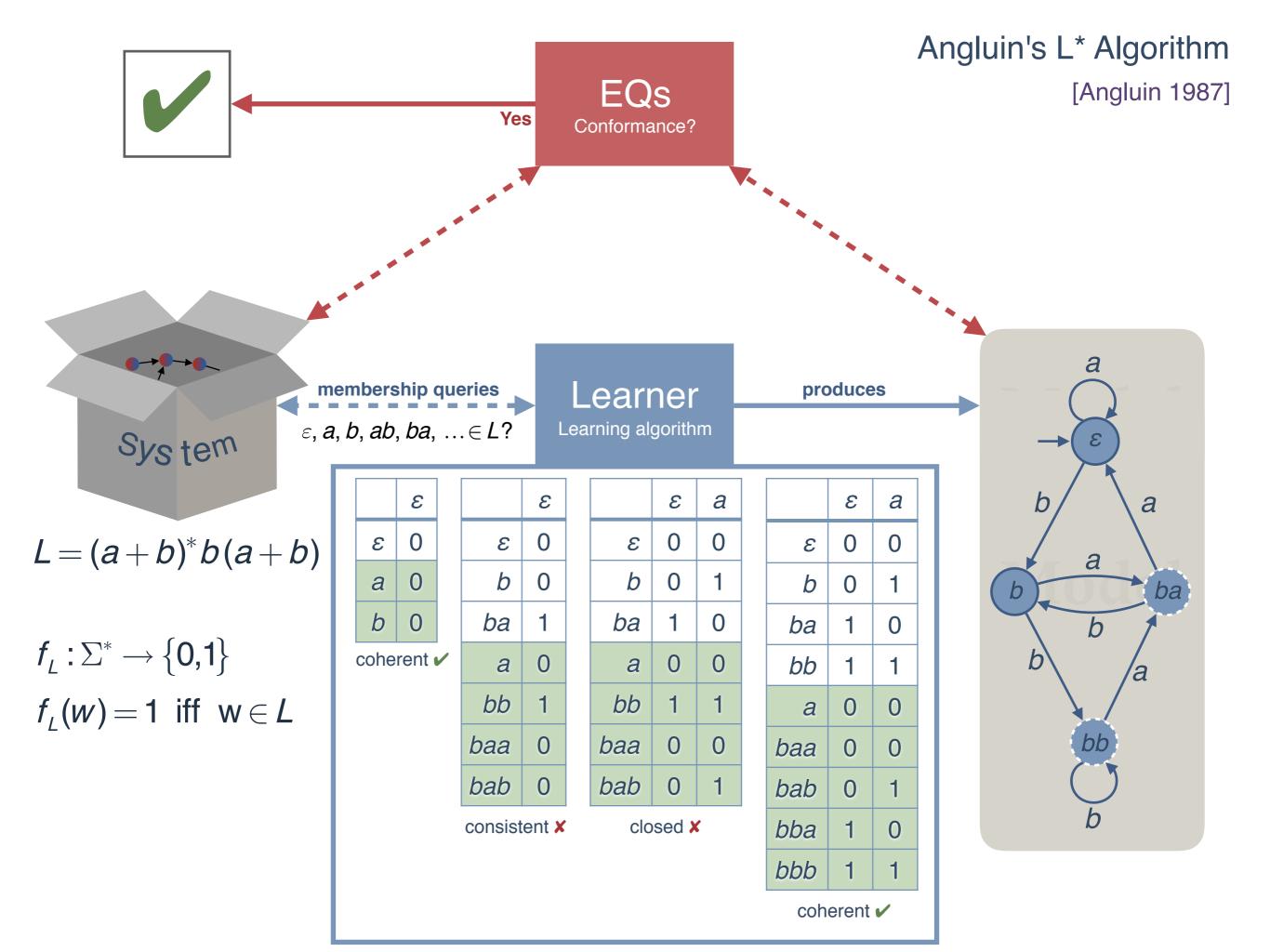


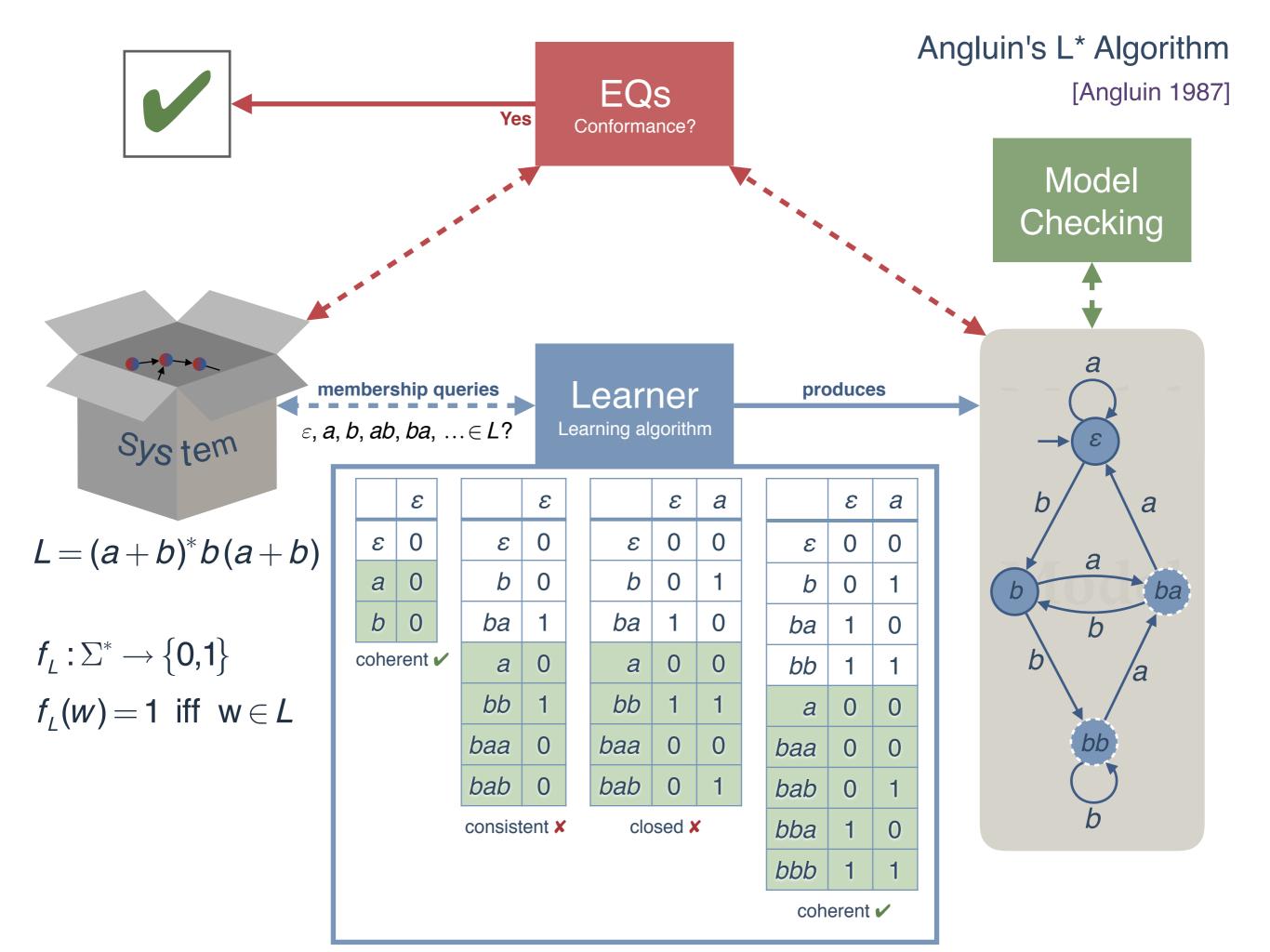


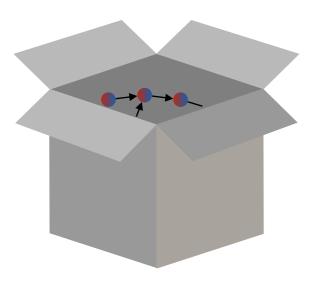




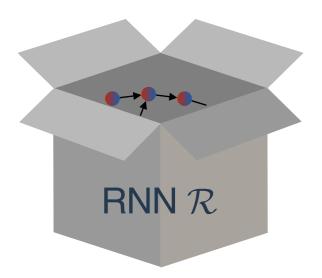




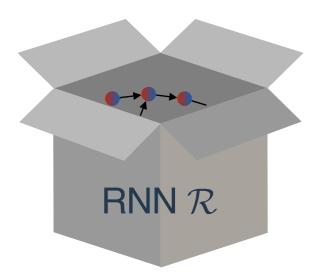




- legacy software
- code not open source
- third-party software
- embedded systems

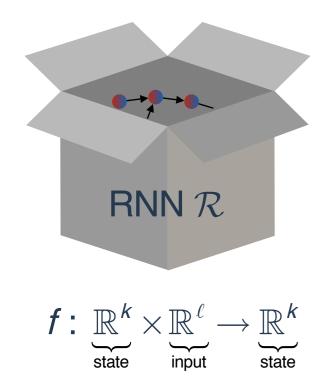


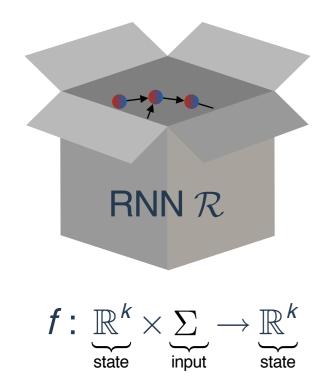
- legacy software
- code not open source
- third-party software
- embedded systems
- recurrent neural networks (RNNs)

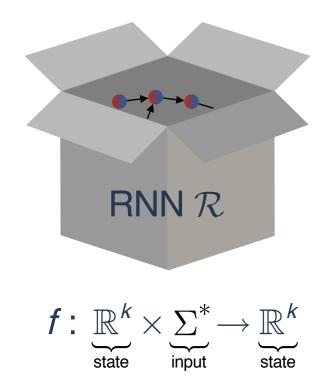


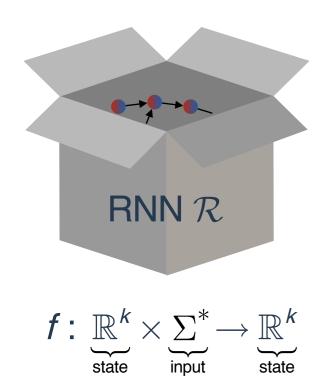
- legacy software
- code not open source
- third-party software
- embedded systems
- recurrent neural networks (RNNs)

(approach works for binary classifiers)

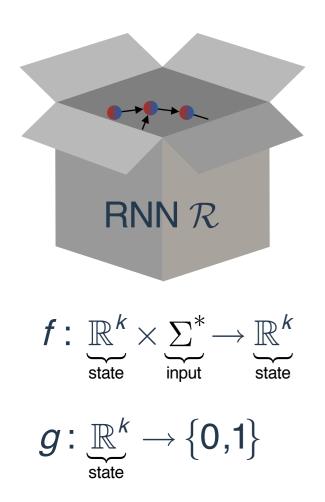




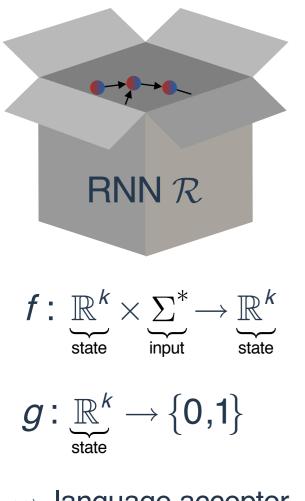




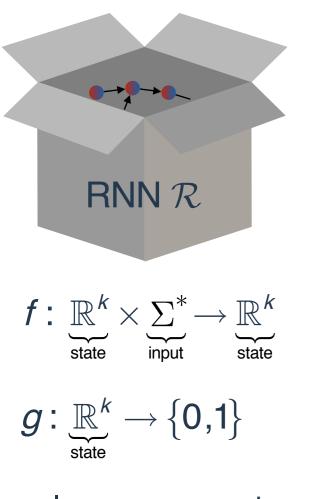
 $g: \underbrace{\mathbb{R}^k}_{\text{state}} \rightarrow \{0, 1\}$



 $\rightarrow \text{ language acceptor}$ $L(\mathcal{R}) = \left\{ w \in \Sigma^* \mid g(f(\textit{init}, w)) = 1 \right\}$



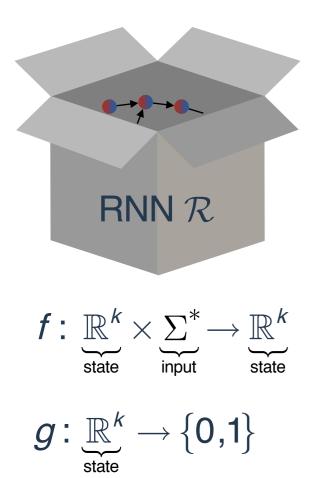
 $\sim \text{language acceptor}$ $L(\mathcal{R}) = \left\{ w \in \Sigma^* \mid g(f(\text{init}, w)) = 1 \right\}$



 $\sim \text{language acceptor}$ $L(\mathcal{R}) = \left\{ w \in \Sigma^* \mid g(f(\textit{init}, w)) = 1 \right\}$

$$L(\mathcal{R}) = L(\mathcal{E})$$

$$\mathcal{L}(\mathcal{R}) = \mathcal{L}(\mathcal{E})$$

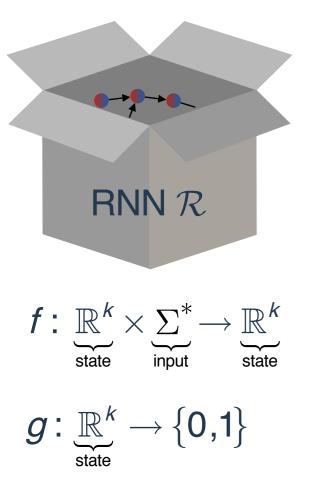


 \rightsquigarrow language acceptor $L(\mathcal{R}) = \{ w \in \Sigma^* \mid g(f(init, w)) = 1 \}$

$$L(\mathcal{R}) = L(\mathcal{E})$$

$$\mathcal{L}(\mathcal{R}) = \mathcal{L}(\mathcal{E})$$

 $\rightsquigarrow L(\mathcal{R})$ is a regular language

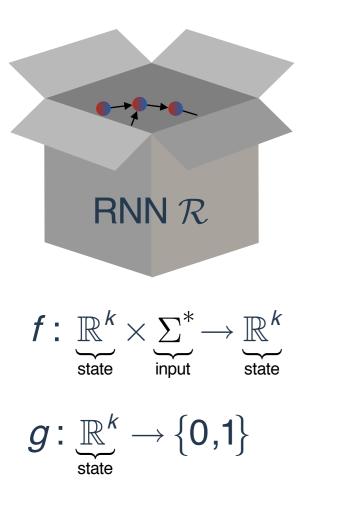


 $\stackrel{\text{$\sim \rightarrow $}}{\sim} \text{ language acceptor}$ $L(\mathcal{R}) = \left\{ w \in \Sigma^* \mid g(f(\textit{init}, w)) = 1 \right\}$

$$L(\mathcal{R}) = L(\mathcal{E})$$

$$\mathcal{L}(\mathcal{R}) = \mathcal{L}(\mathcal{E})$$

 $\rightsquigarrow L(\mathcal{R})$ is a regular language restrictive: how about RNNs recognizing XML documents?



 $\stackrel{\text{$\sim \rightarrow $}}{\sim} \text{ language acceptor}$ $L(\mathcal{R}) = \left\{ w \in \Sigma^* \mid g(f(\textit{init}, w)) = 1 \right\}$

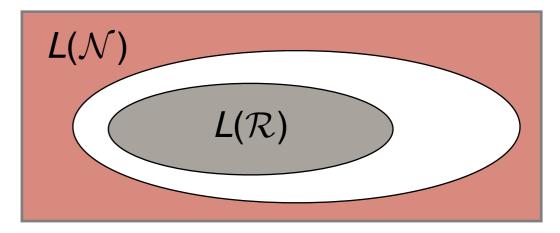
Specify correctness using finite automata \mathcal{E}, \mathcal{N} over Σ

$$L(\mathcal{R}) = L(\mathcal{E})$$

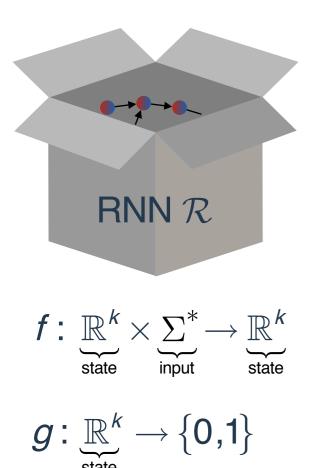
$$\mathcal{L}(\mathcal{R}) = \mathcal{L}(\mathcal{E})$$

 $\rightsquigarrow L(\mathcal{R})$ is a regular language

restrictive: how about RNNs recognizing XML documents?



each $w \in L(\mathcal{N})$ must be classified as negative \mathcal{R} does not produce false positives



 \rightsquigarrow language acceptor $L(\mathcal{R}) = \{ w \in \Sigma^* \mid g(f(init, w)) = 1 \}$

Specify correctness using finite automata \mathcal{E}, \mathcal{N} over Σ

$$L(\mathcal{R}) = L(\mathcal{E})$$

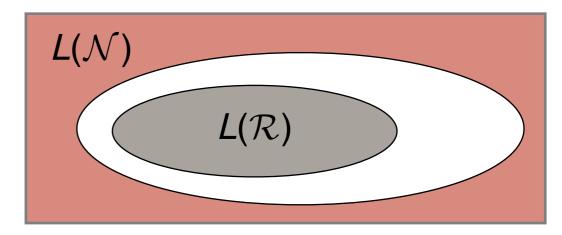
 $L(\mathcal{R}) \subseteq L(\mathcal{N})$

complement

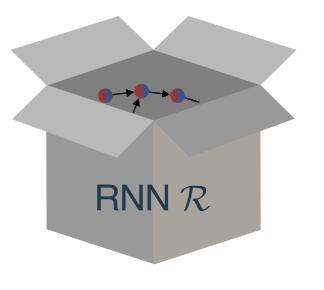
$$\mathcal{L}(\mathcal{R}) = \mathcal{L}(\mathcal{E})$$

 $\rightsquigarrow L(\mathcal{R})$ is a regular language

restrictive: how about RNNs recognizing XML documents?



each $w \in L(\mathcal{N})$ must be classified as negative \mathcal{R} does not produce false positives



- $f: \underbrace{\mathbb{R}^{k}}_{\text{state}} \times \underbrace{\Sigma^{*}}_{\text{input}} \longrightarrow \underbrace{\mathbb{R}^{k}}_{\text{state}}$
- $g: \mathbb{R}^k_{ ext{state}} o \{0,1\}$
- $\rightarrow \text{ language acceptor}$ $L(\mathcal{R}) = \left\{ w \in \Sigma^* \mid g(f(\textit{init}, w)) = 1 \right\}$

Specify correctness using finite automata $\mathcal{E}, \mathcal{N}, \mathcal{P}$ over Σ

$$L(\mathcal{R}) = L(\mathcal{E})$$

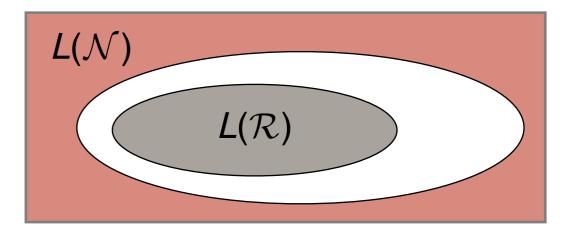
 $L(\mathcal{R}) \subseteq L(\mathcal{N})$

complement

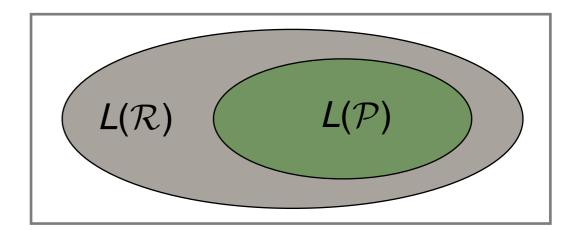
 $\mathcal{L}(\mathcal{R}) = \mathcal{L}(\mathcal{E})$

 $\rightsquigarrow L(\mathcal{R})$ is a regular language

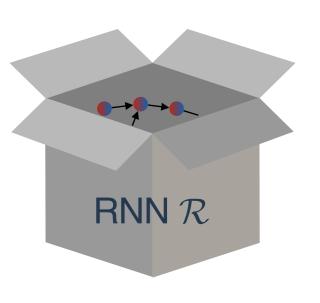
restrictive: how about RNNs recognizing XML documents?



each $w \in L(\mathcal{N})$ must be classified as negative \mathcal{R} does not produce false positives



each $w \in L(\mathcal{P})$ must be classified as positive \mathcal{R} does not produce false negatives



- $f: \mathbb{R}^{k} \times \mathbb{\Sigma}^{*} \longrightarrow \mathbb{R}^{k}$ _{state}
- $g: \underbrace{\mathbb{R}^k}_{\text{state}} \rightarrow \{0, 1\}$

→ language acceptor

$$L(\mathcal{R}) = \left\{ w \in \Sigma^* \mid g(f(init, w)) = 1 \right\}$$

Specify correctness using finite automata $\mathcal{E}, \mathcal{N}, \mathcal{P}$ over Σ

 $RNN \mathcal{R}$

 $f: \underbrace{\mathbb{R}^{k}}_{\text{state}} \times \underbrace{\Sigma^{*}}_{\text{input}} \to \underbrace{\mathbb{R}^{k}}_{\text{state}}$

$$L(\mathcal{R}) = L(\mathcal{E})$$

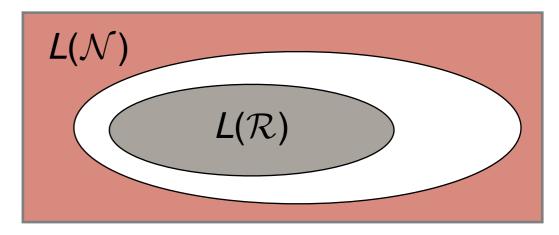
 $L(\mathcal{R}) \subseteq L(\mathcal{N})$

complement

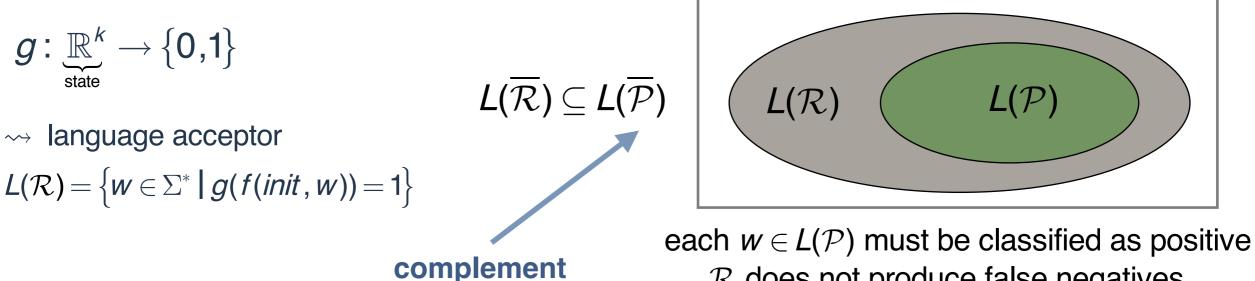
 $L(\mathcal{R}) = L(\mathcal{E})$

 $\rightsquigarrow L(\mathcal{R})$ is a regular language

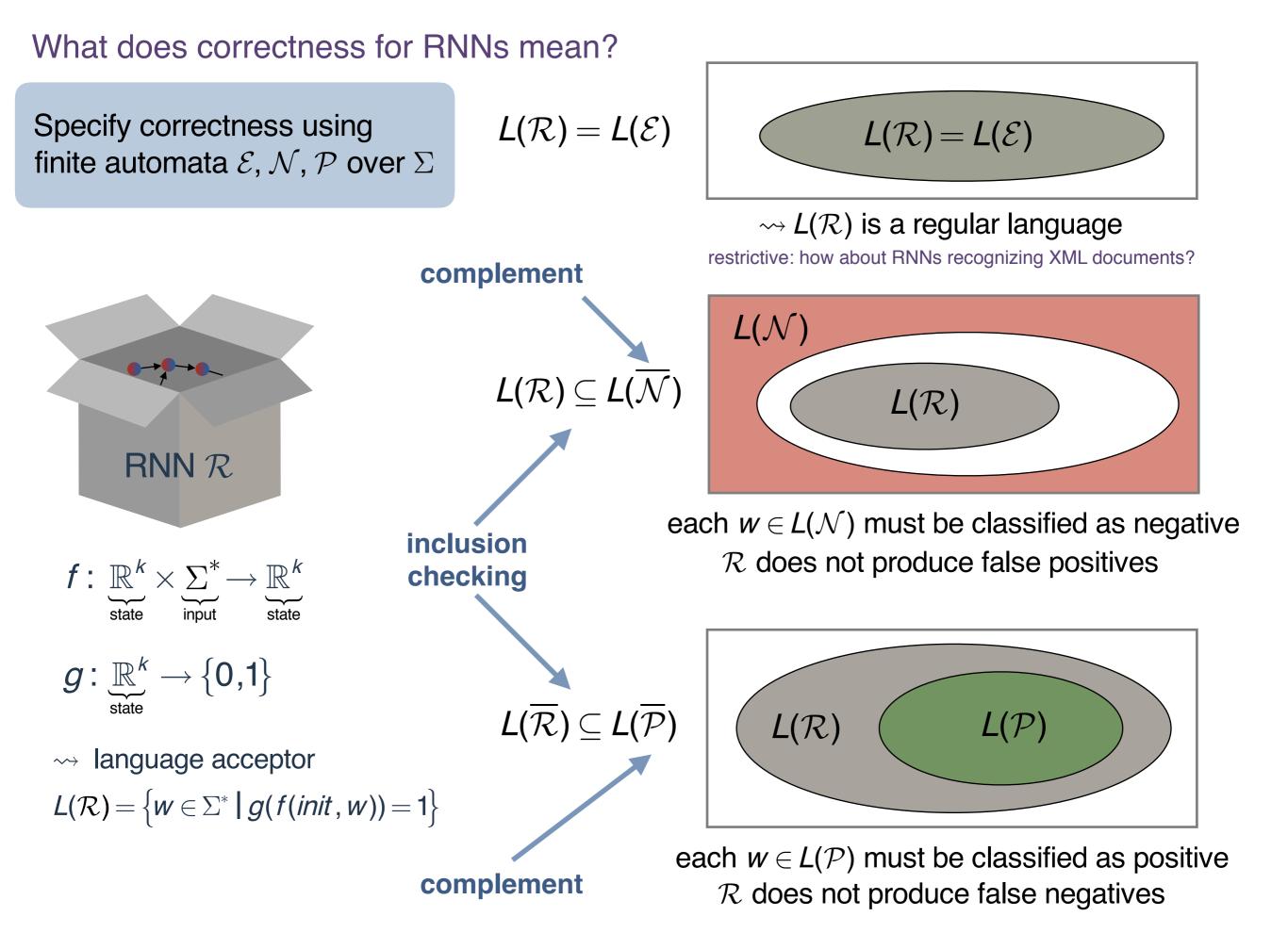
restrictive: how about RNNs recognizing XML documents?



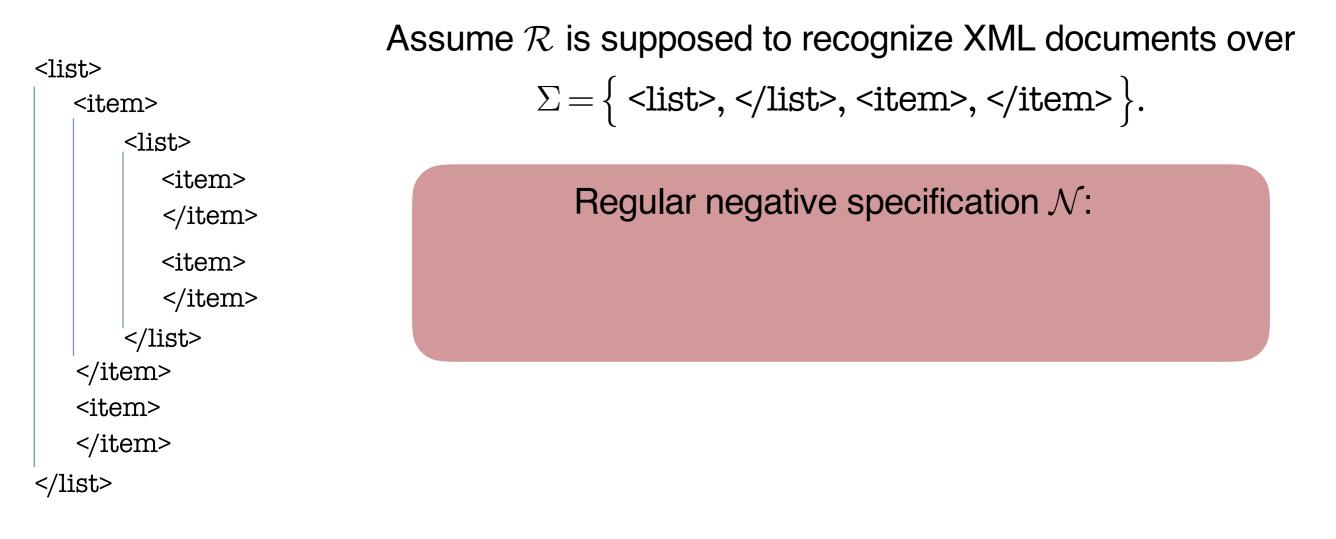
each $w \in L(\mathcal{N})$ must be classified as negative \mathcal{R} does not produce false positives

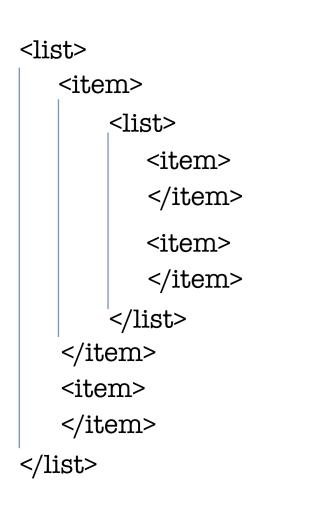


 \mathcal{R} does not produce false negatives



	Assume ${\mathcal R}$ is supposed to recognize XML documents over
list> <item></item>	$\Sigma = \{ \langle ist \rangle, \langle item \rangle, \langle item \rangle \}.$
<list></list>	
<item></item>	
<item></item>	
<item></item>	



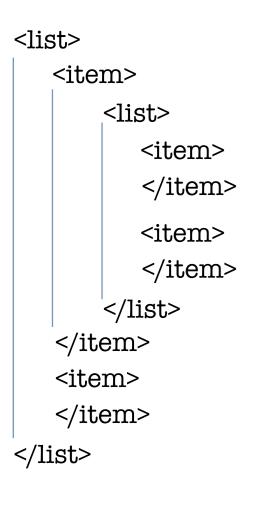


Assume \mathcal{R} is supposed to recognize XML documents over $\Sigma = \{ \langle \text{ist} \rangle, \langle \text{item} \rangle, \langle \text{item} \rangle \}.$

Regular negative specification \mathcal{N} :

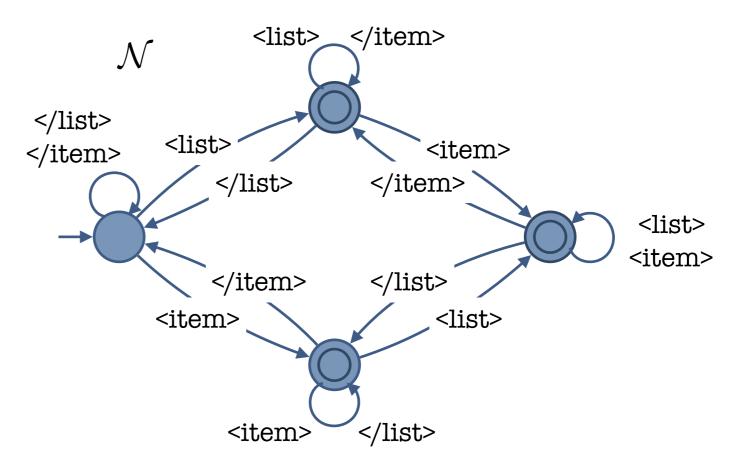
"there is an opening tag that is not

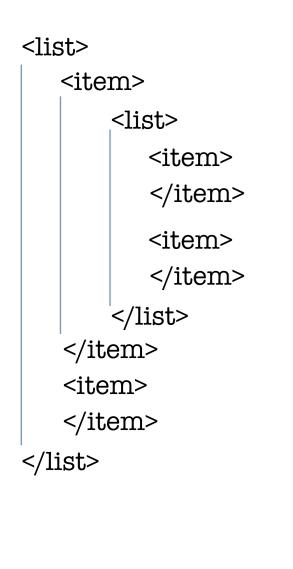
eventually followed by a corresponding closing tag"



Assume \mathcal{R} is supposed to recognize XML documents over $\Sigma = \{ < \text{list} >, < / \text{list} >, < \text{item} >, < / \text{item} > \}.$

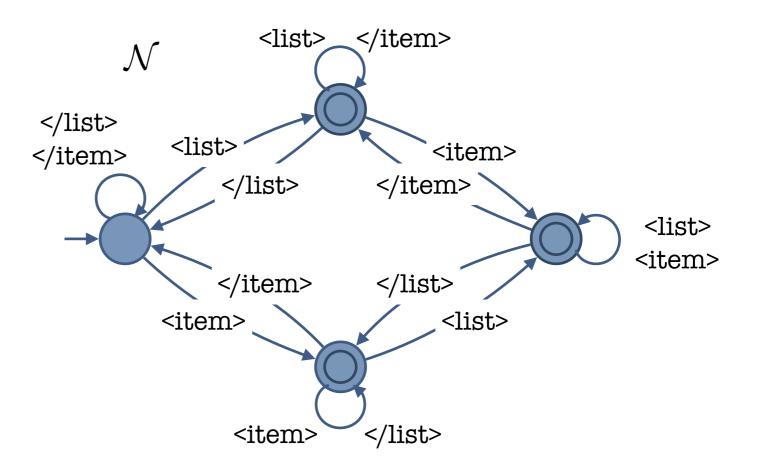
Regular negative specification \mathcal{N} : "there is an opening tag that is not eventually followed by a corresponding closing tag"



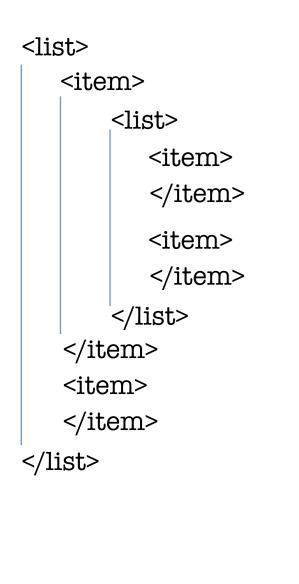


Assume \mathcal{R} is supposed to recognize XML documents over $\Sigma = \{ < \text{list} >, < / \text{list} >, < \text{item} >, < / \text{item} > \}.$

Regular negative specification \mathcal{N} : "there is an opening tag that is not eventually followed by a corresponding closing tag"

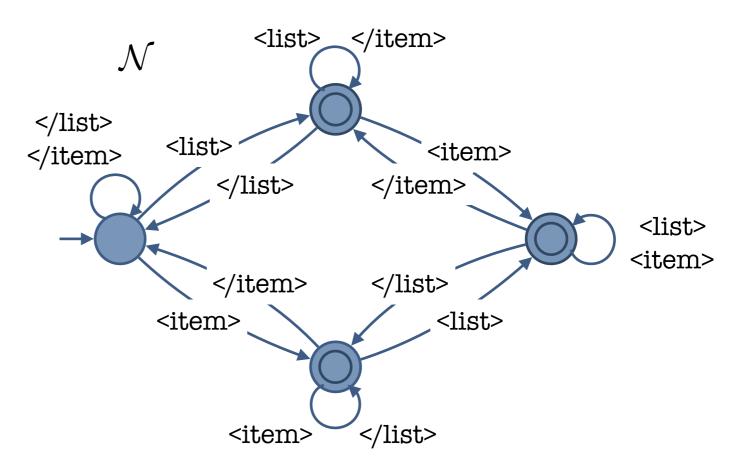


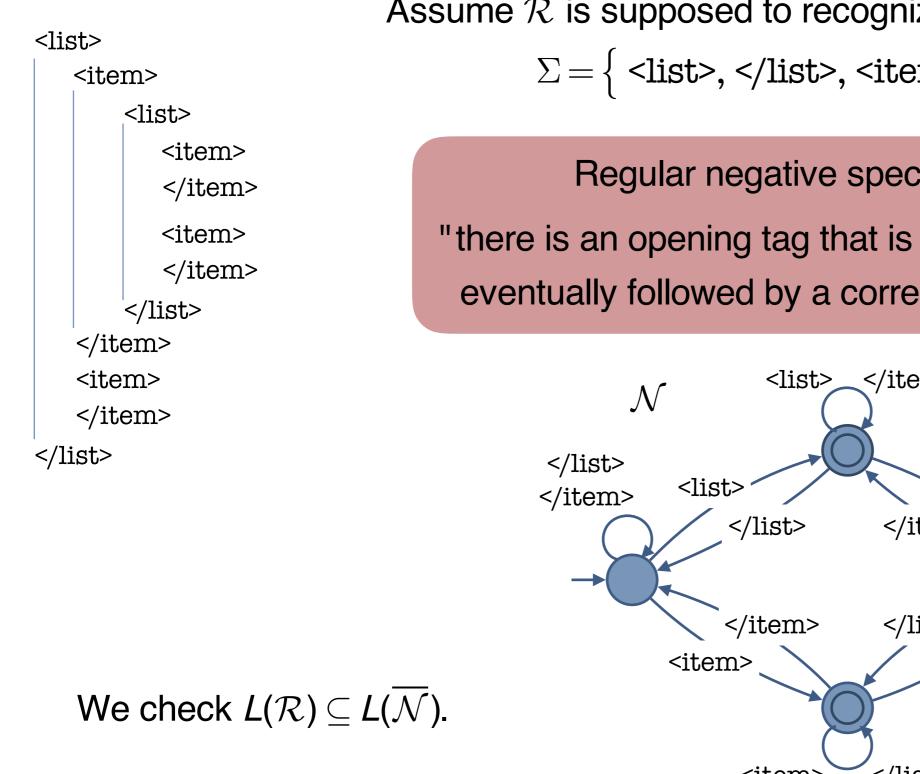
t<item> </item> </list> $\in L(\mathcal{N})$



Assume \mathcal{R} is supposed to recognize XML documents over $\Sigma = \{ < \text{list} >, < / \text{list} >, < \text{item} >, < / \text{item} > \}.$

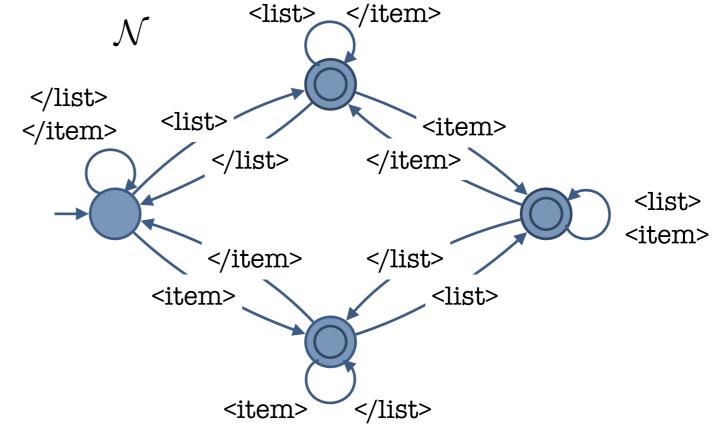
Regular negative specification \mathcal{N} : "there is an opening tag that is not eventually followed by a corresponding closing tag"



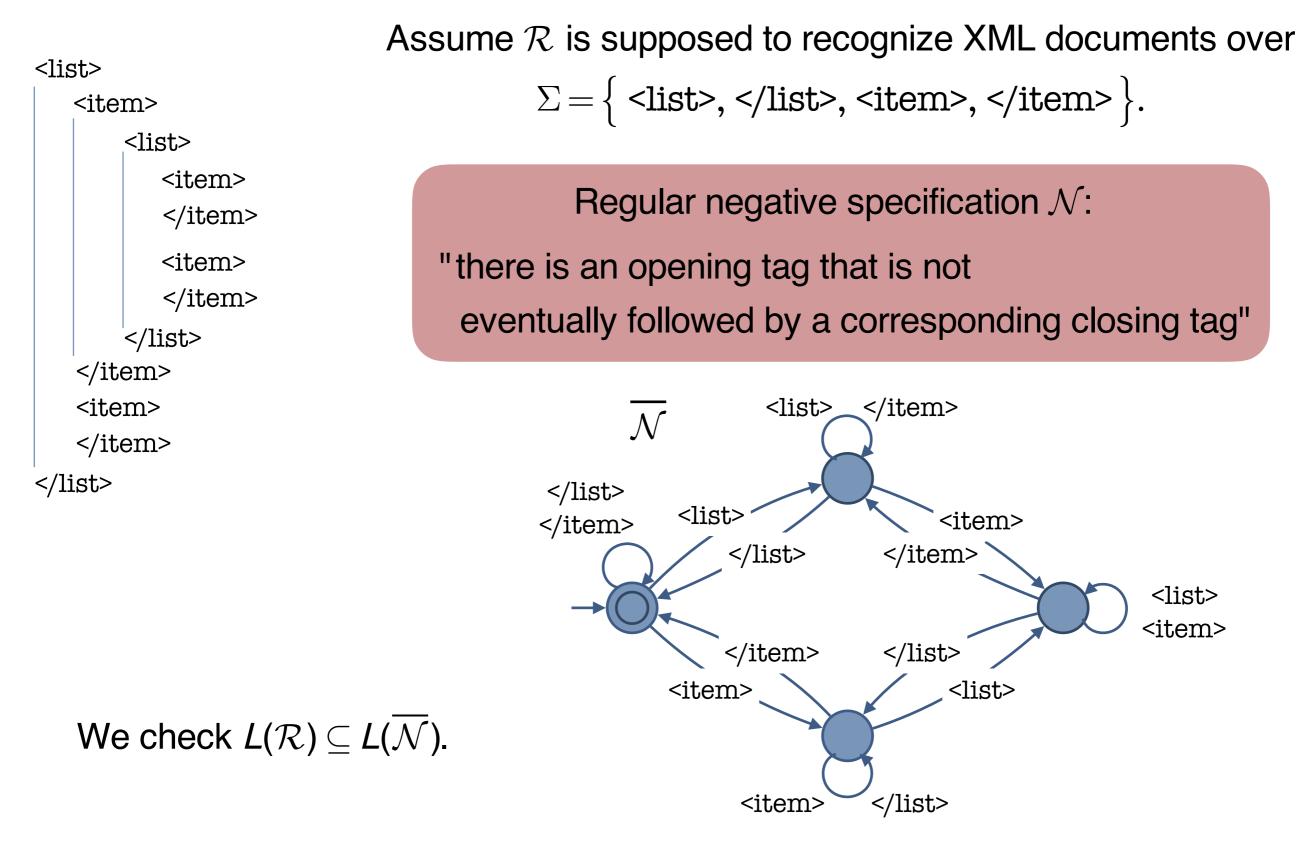


Assume \mathcal{R} is supposed to recognize XML documents over $\Sigma = \{ \langle \text{ist} \rangle, \langle \text{item} \rangle, \langle \text{item} \rangle \}.$

Regular negative specification \mathcal{N} : "there is an opening tag that is not eventually followed by a corresponding closing tag"



t> <item> </item> </list> $\in L(\mathcal{N})$



t> <item> </item> </list> $\in L(\mathcal{N})$ <list>

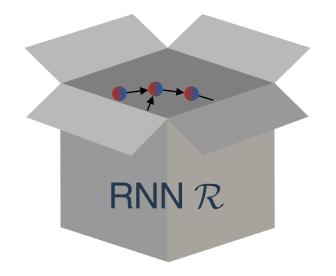
<item>

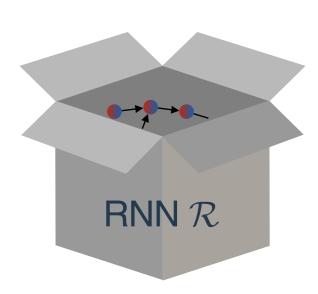
Statistical model checking (SMC)

- Statistical model checking (SMC)
- Automaton abstraction & model checking (AAMC) (model-learning approach)

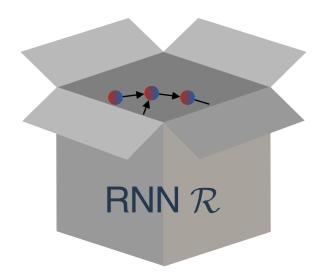
- Statistical model checking (SMC)
- Automaton abstraction & model checking (AAMC) (model-learning approach)
- Property-directed verification (PDV)

Fix $\varepsilon, \gamma > 0$. Sample log(2 / ε) / (2 γ^2) words over Σ .



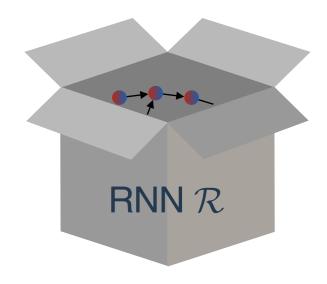


Fix $\varepsilon, \gamma > 0$. Sample $\log(2 / \varepsilon) / (2\gamma^2)$ words over Σ . If, for some word w, we have $w \in L(\mathcal{R})$ and $w \notin L(\mathcal{A})$: Property not satisfied.



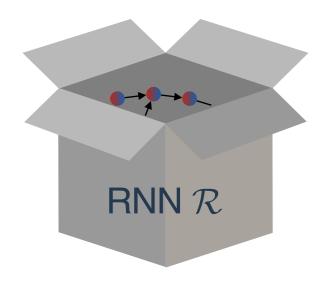
Fix $\varepsilon, \gamma > 0$. Sample $\log(2 / \varepsilon) / (2\gamma^2)$ words over Σ . If, for some word w, we have $w \in L(\mathcal{R})$ and $w \notin L(\mathcal{A})$: Property not satisfied.

Else, \mathcal{R} is ε -approximately correct with probability at least $1 - \gamma$.



Fix $\varepsilon, \gamma > 0$. Sample $\log(2 / \varepsilon) / (2\gamma^2)$ words over Σ . If, for some word w, we have $w \in L(\mathcal{R})$ and $w \notin L(\mathcal{A})$: Property not satisfied. Else, \mathcal{R} is ε -approximately correct with probability at least $1 - \gamma$.

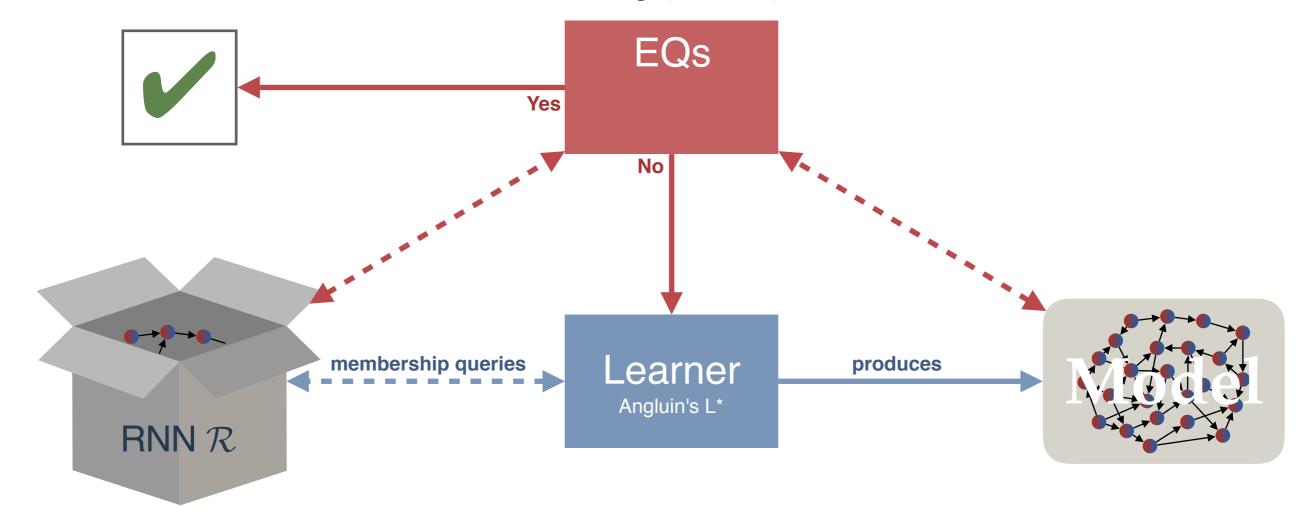
 $\Pr(L(\mathcal{R}) \setminus L(\mathcal{A})) < \varepsilon$



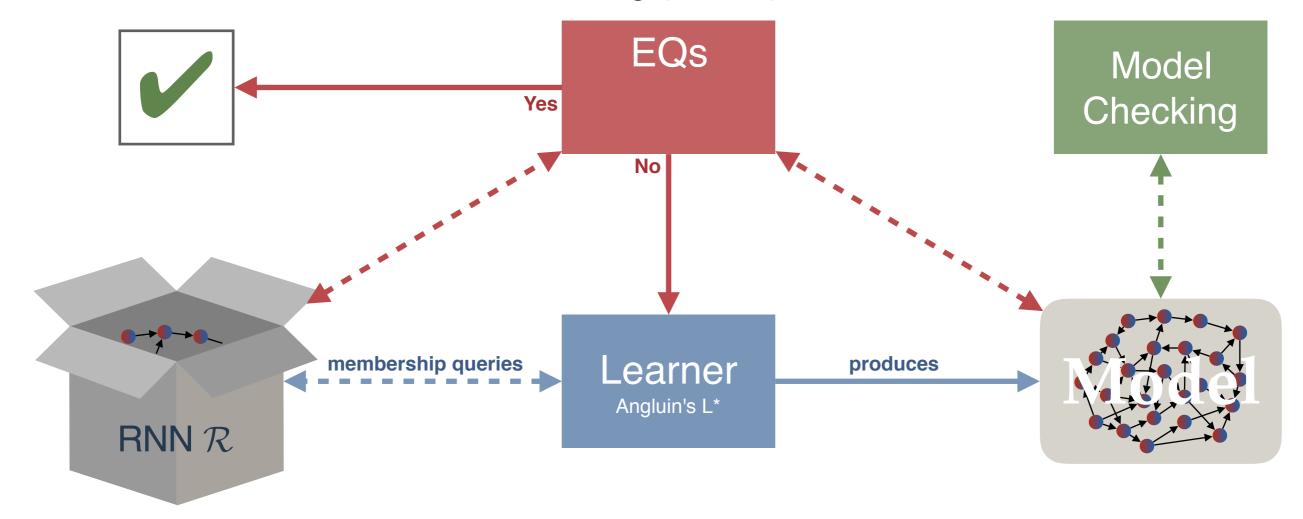
Fix $\varepsilon, \gamma > 0$. Sample $\log(2 / \varepsilon) / (2\gamma^2)$ words over Σ . If, for some word w, we have $w \in L(\mathcal{R})$ and $w \notin L(\mathcal{A})$: Property not satisfied. Else, \mathcal{R} is ε -approximately correct with probability at least $1 - \gamma$. $\Pr(L(\mathcal{R}) \setminus L(\mathcal{A})) < \varepsilon$

- Relies on probability distribution.
- May require many queries.

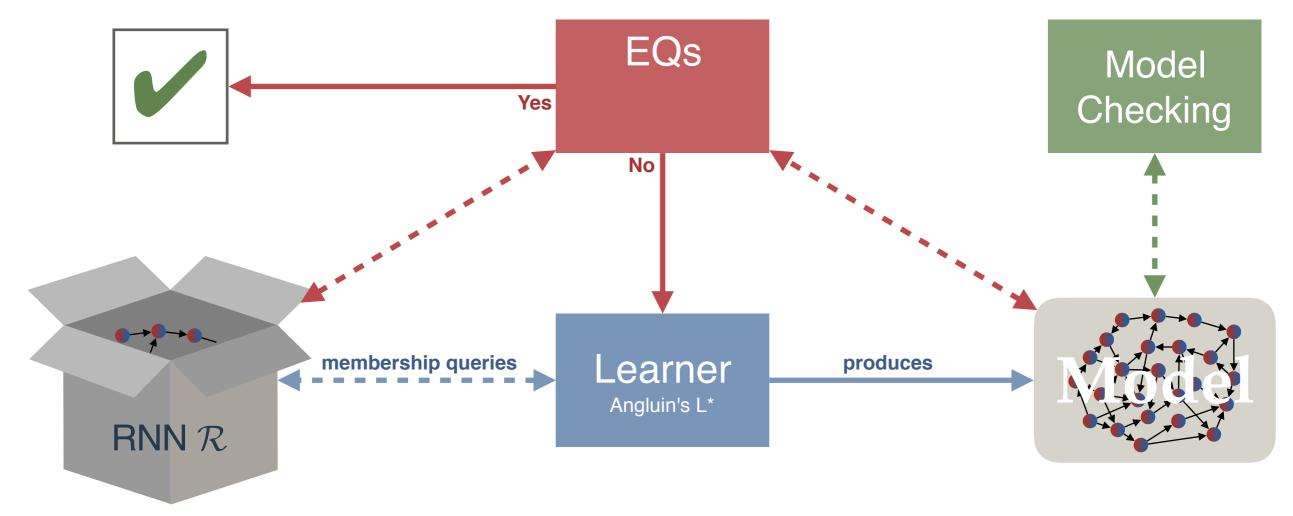
Automaton abstraction & model checking (AAMC)



Automaton abstraction & model checking (AAMC)

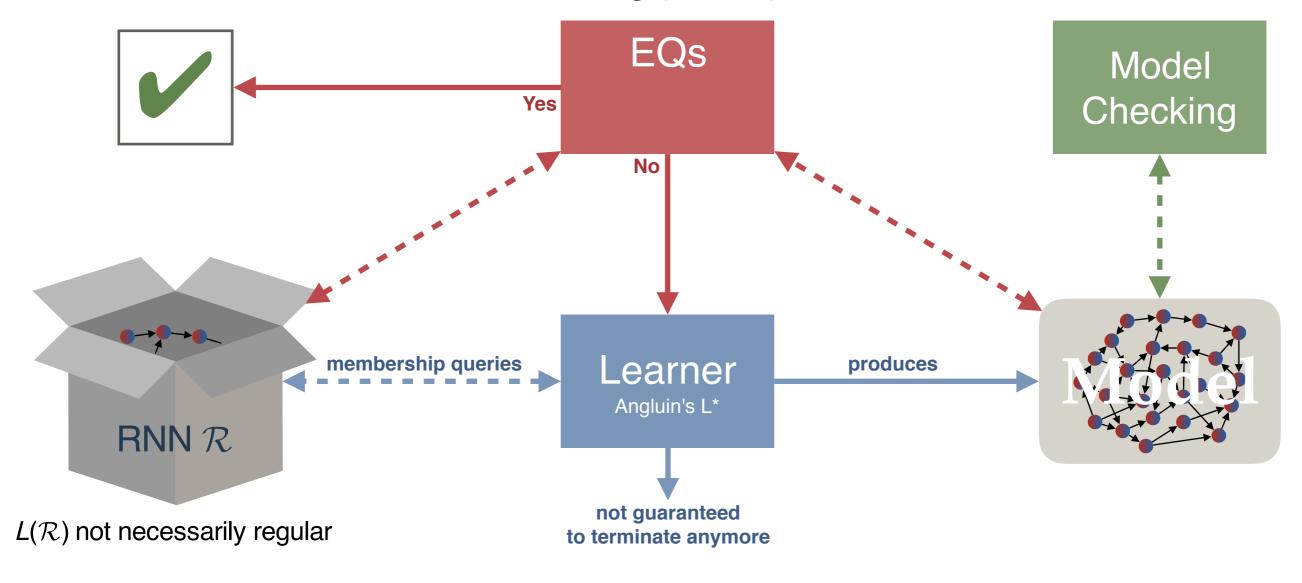


Automaton abstraction & model checking (AAMC)

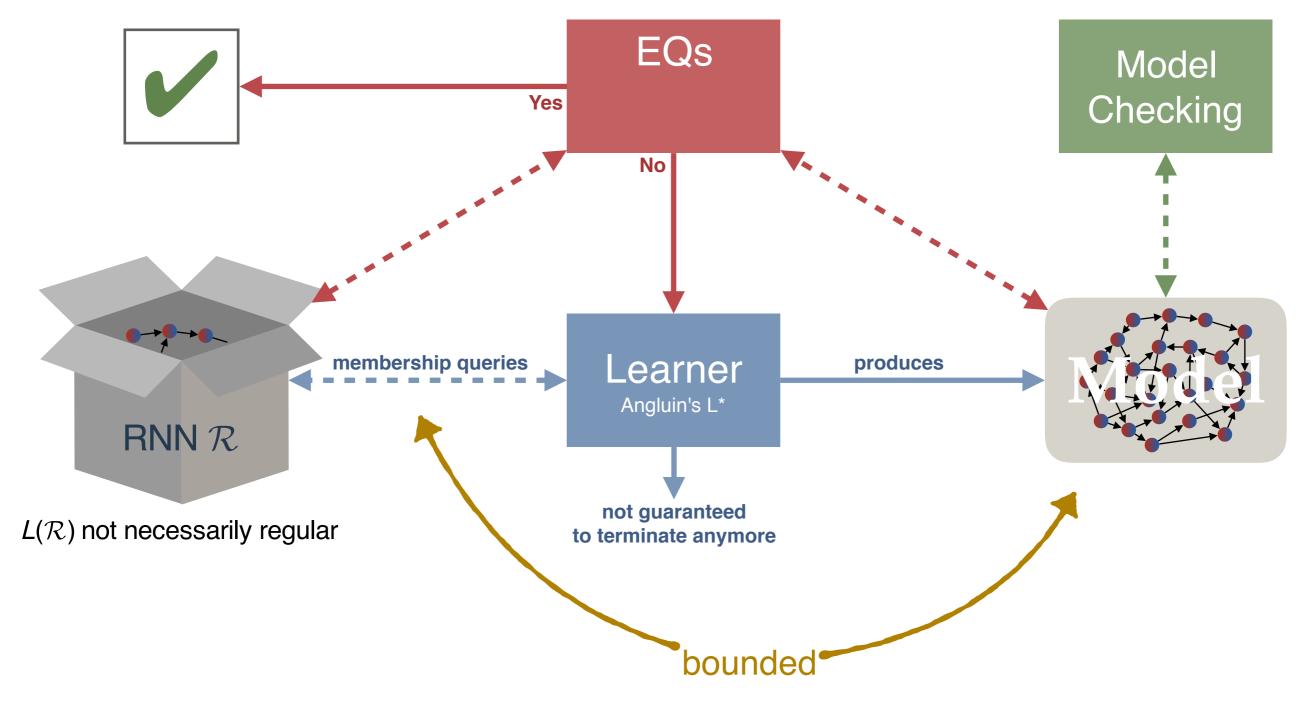


 $L(\mathcal{R})$ not necessarily regular

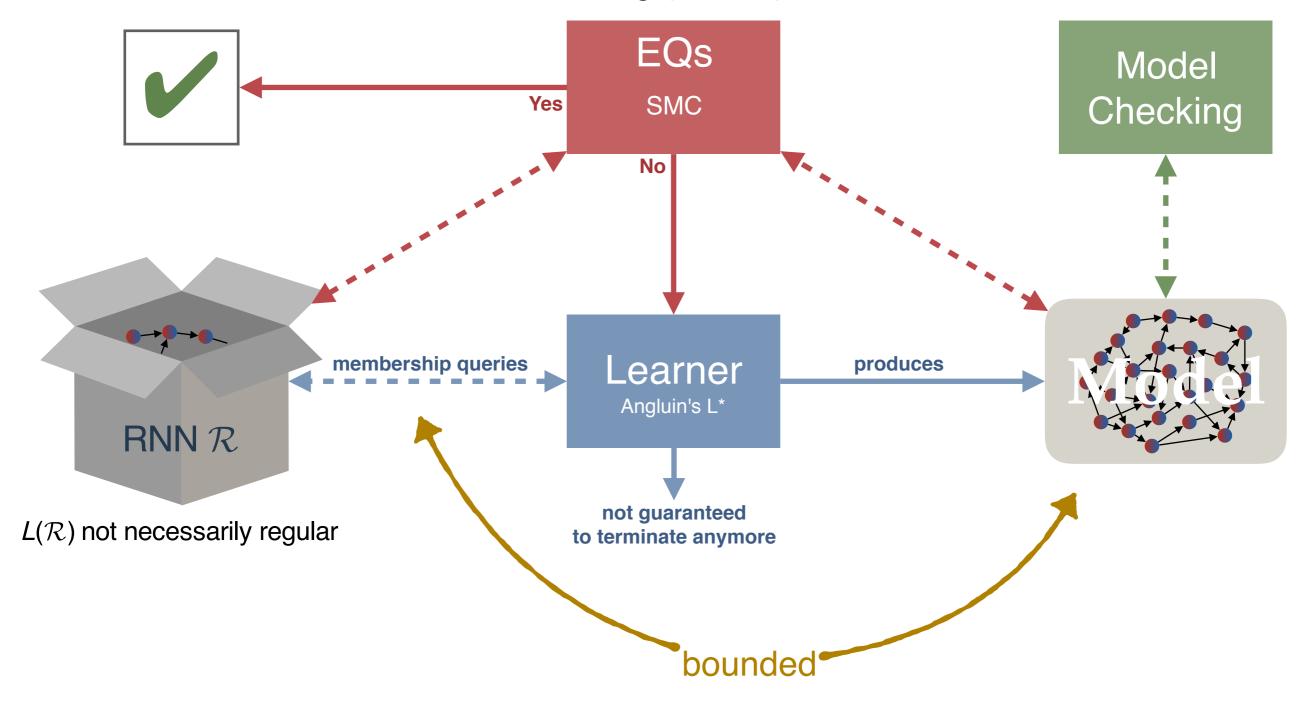
Automaton abstraction & model checking (AAMC)



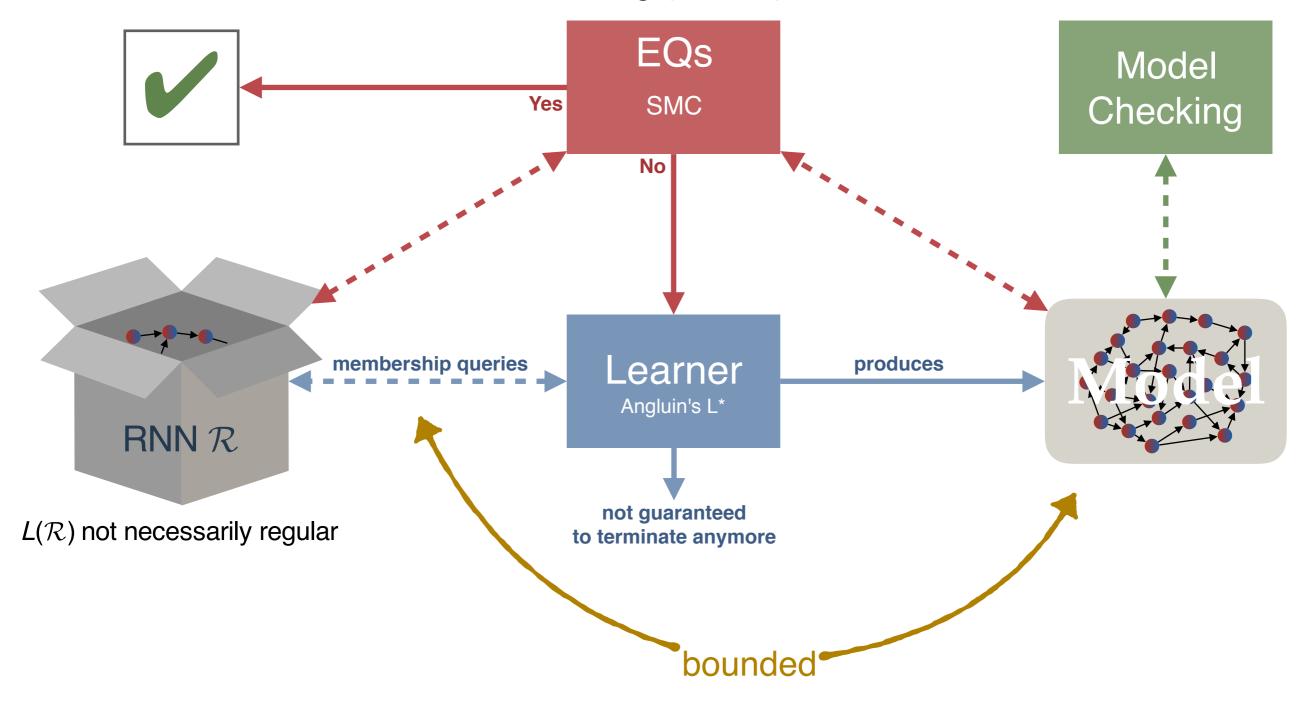
Automaton abstraction & model checking (AAMC)



Automaton abstraction & model checking (AAMC)



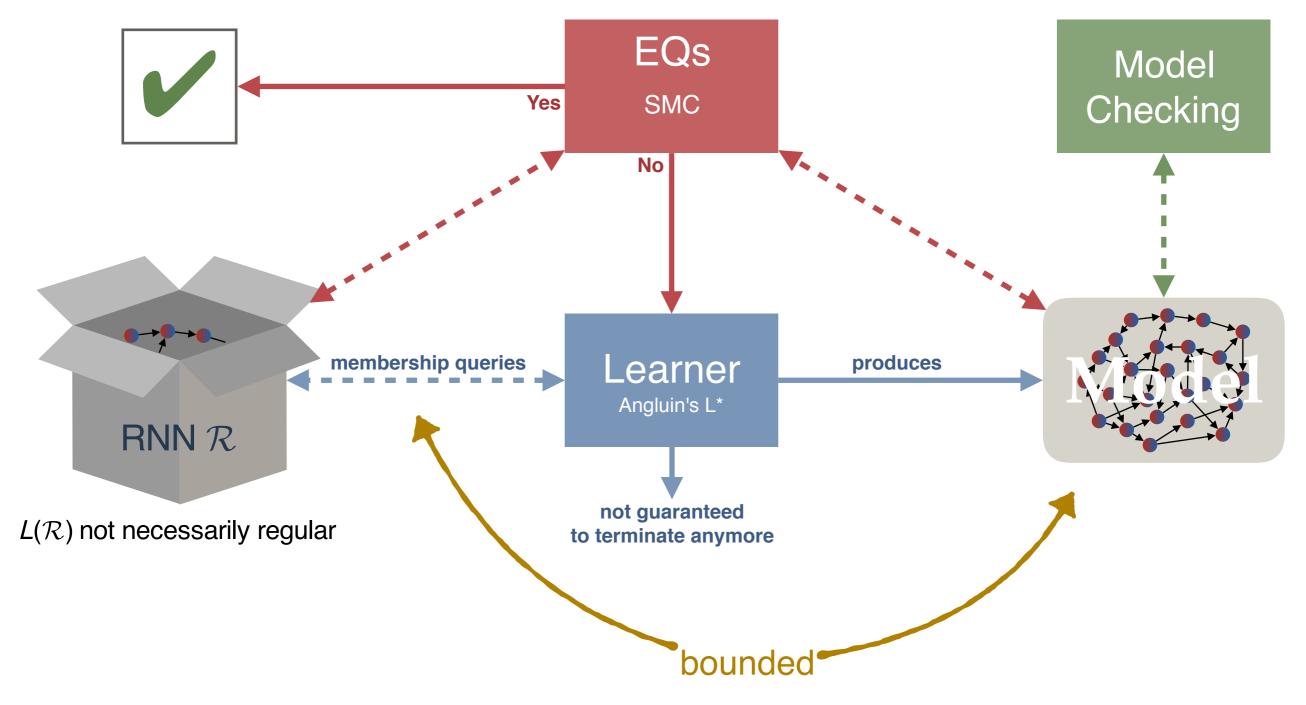
Automaton abstraction & model checking (AAMC)



• Relies on probability distribution.

[Mayr, Yovine: Regular inference on artificial neural networks. CD-MAKE 2018]

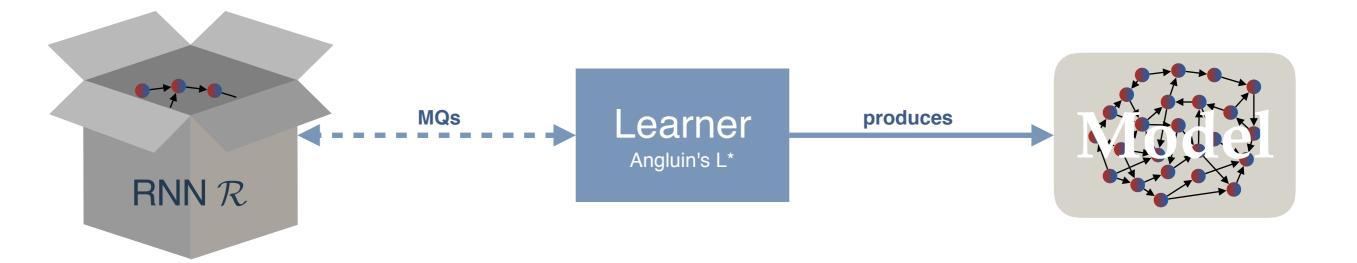
Automaton abstraction & model checking (AAMC)

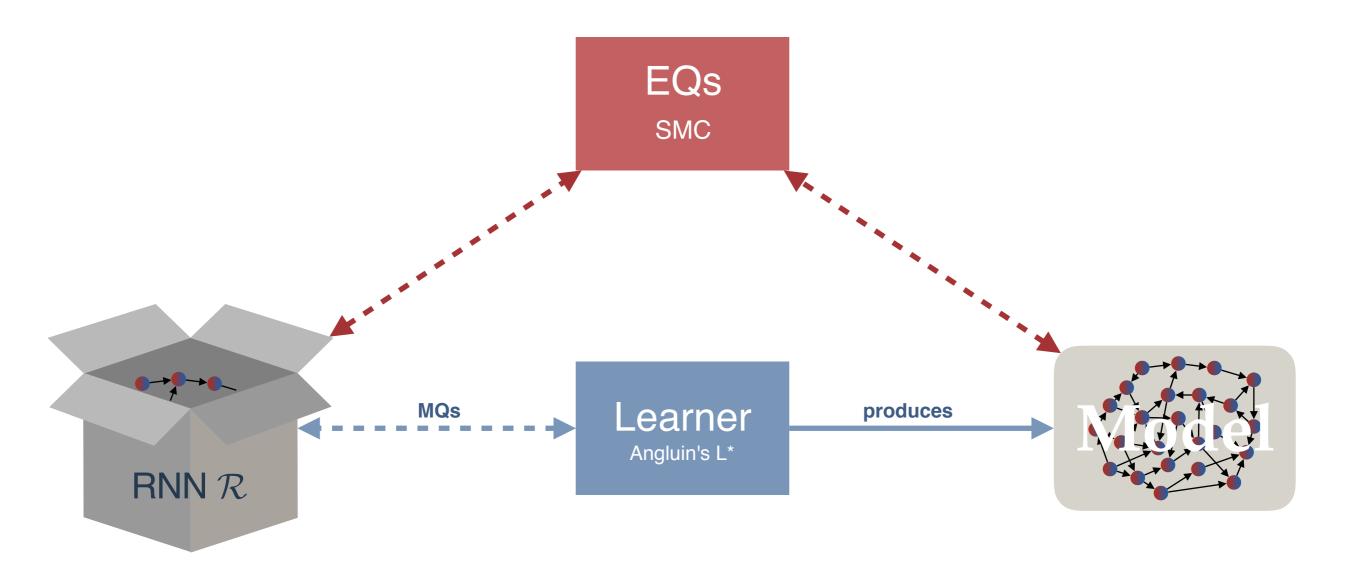


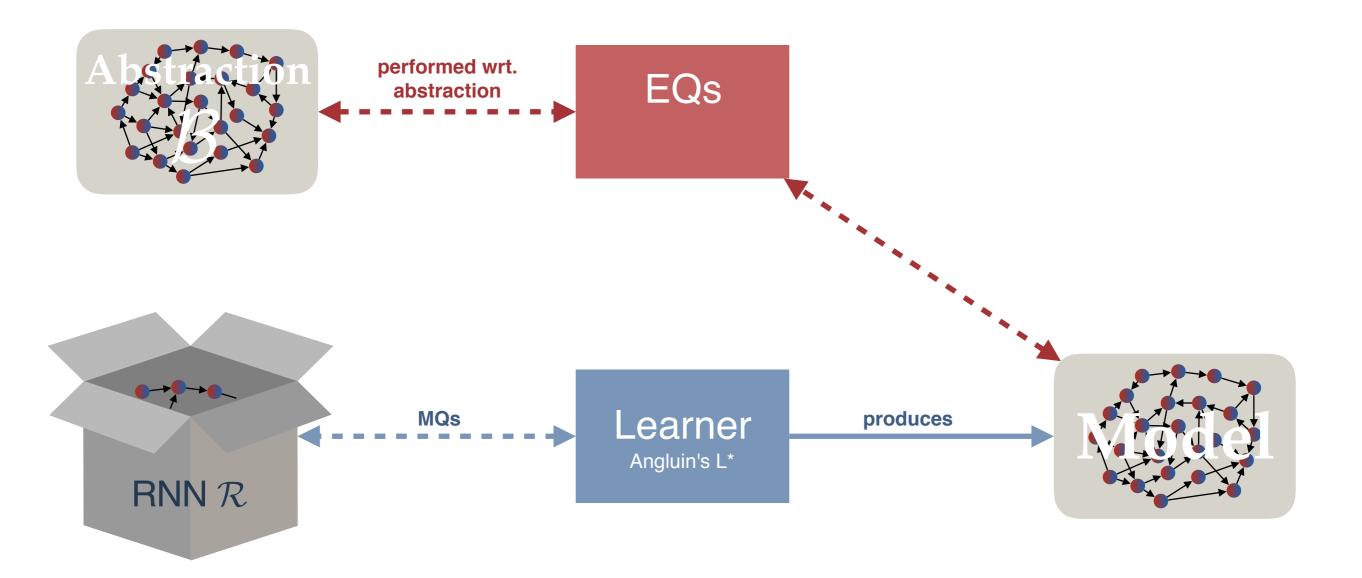
- Relies on probability distribution.
- Counterexample may be spurious.

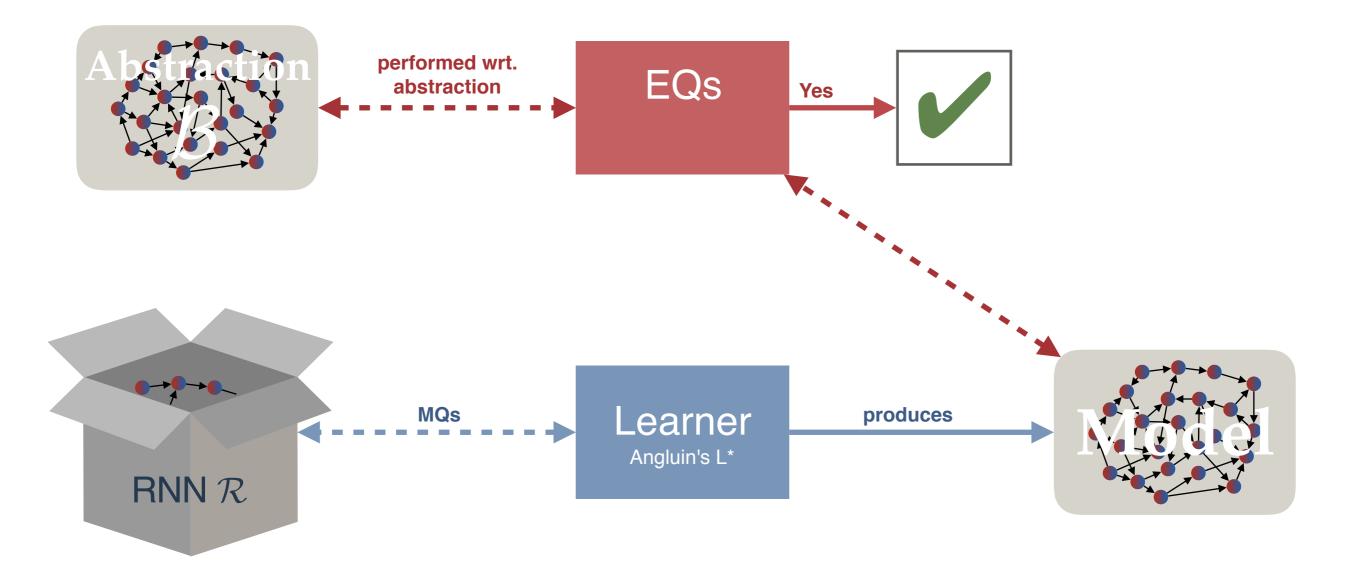
As EQs are implemented by SMC, a "counterexample" may be classified by RNN as negative.

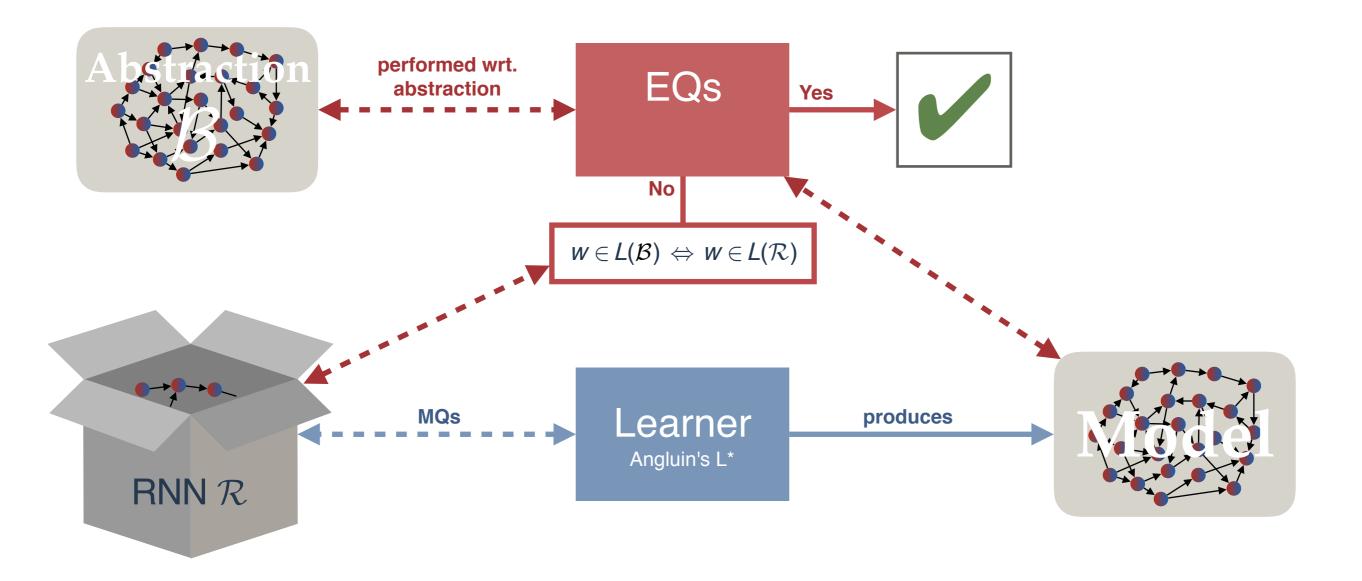
[Mayr, Yovine: Regular inference on artificial neural networks. CD-MAKE 2018]

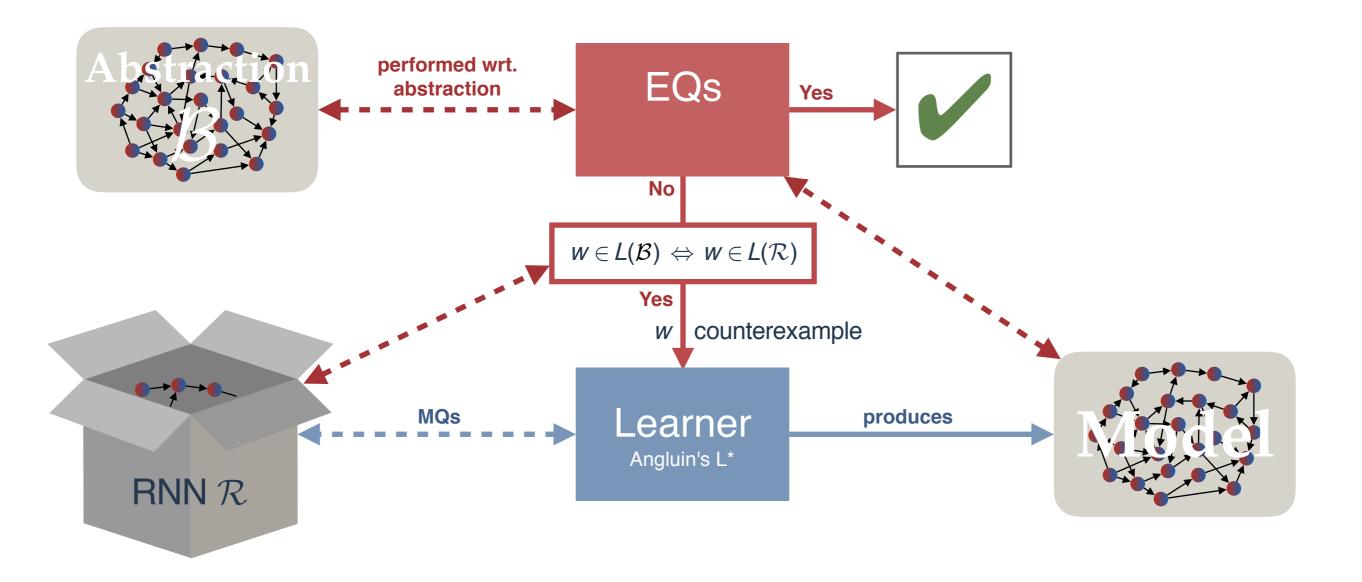


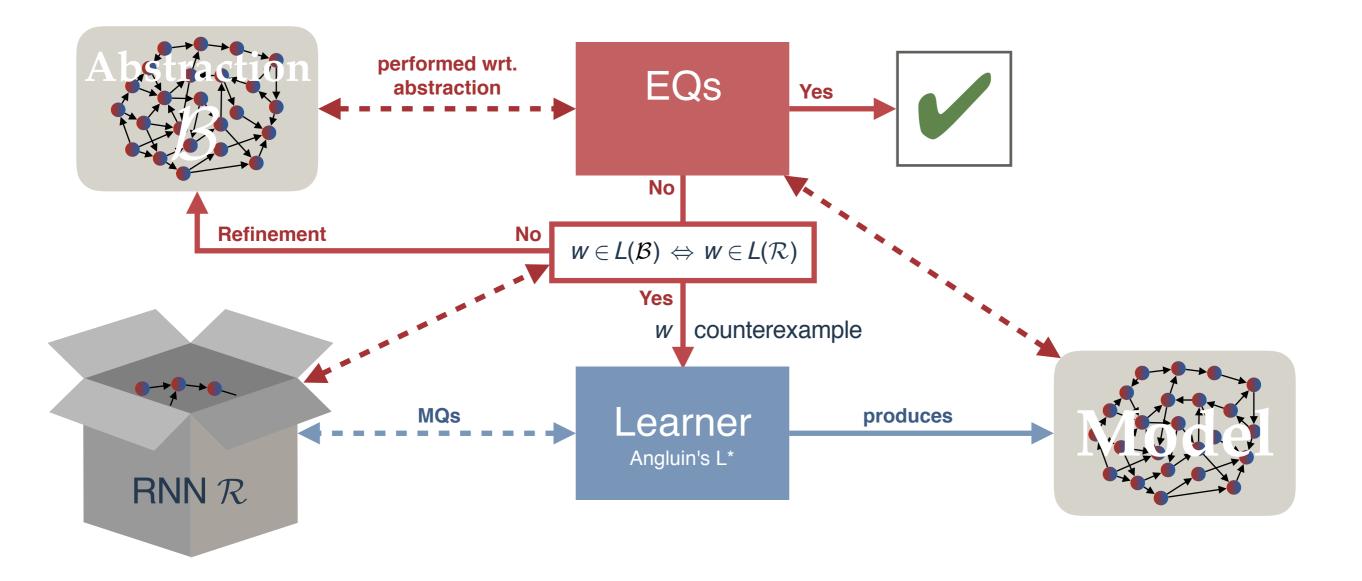


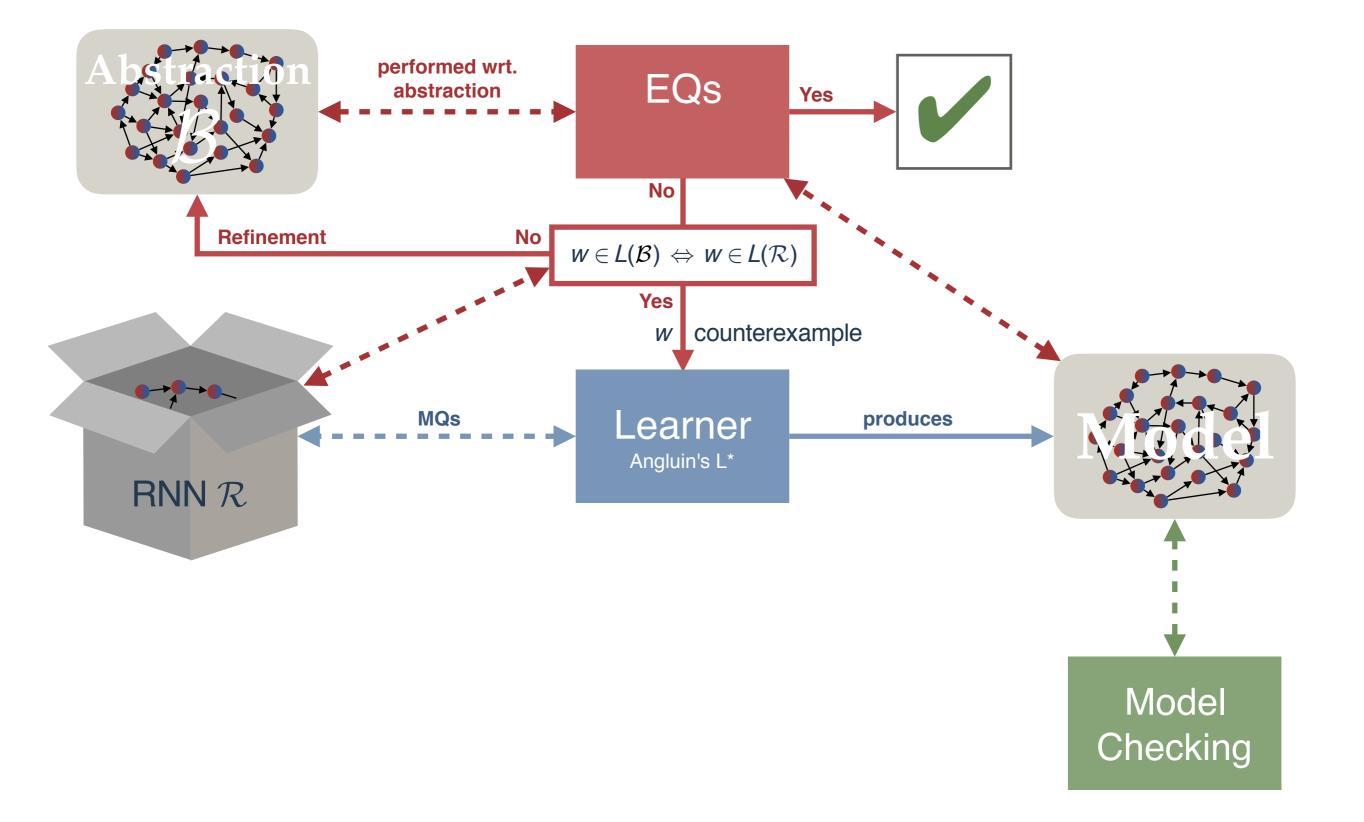


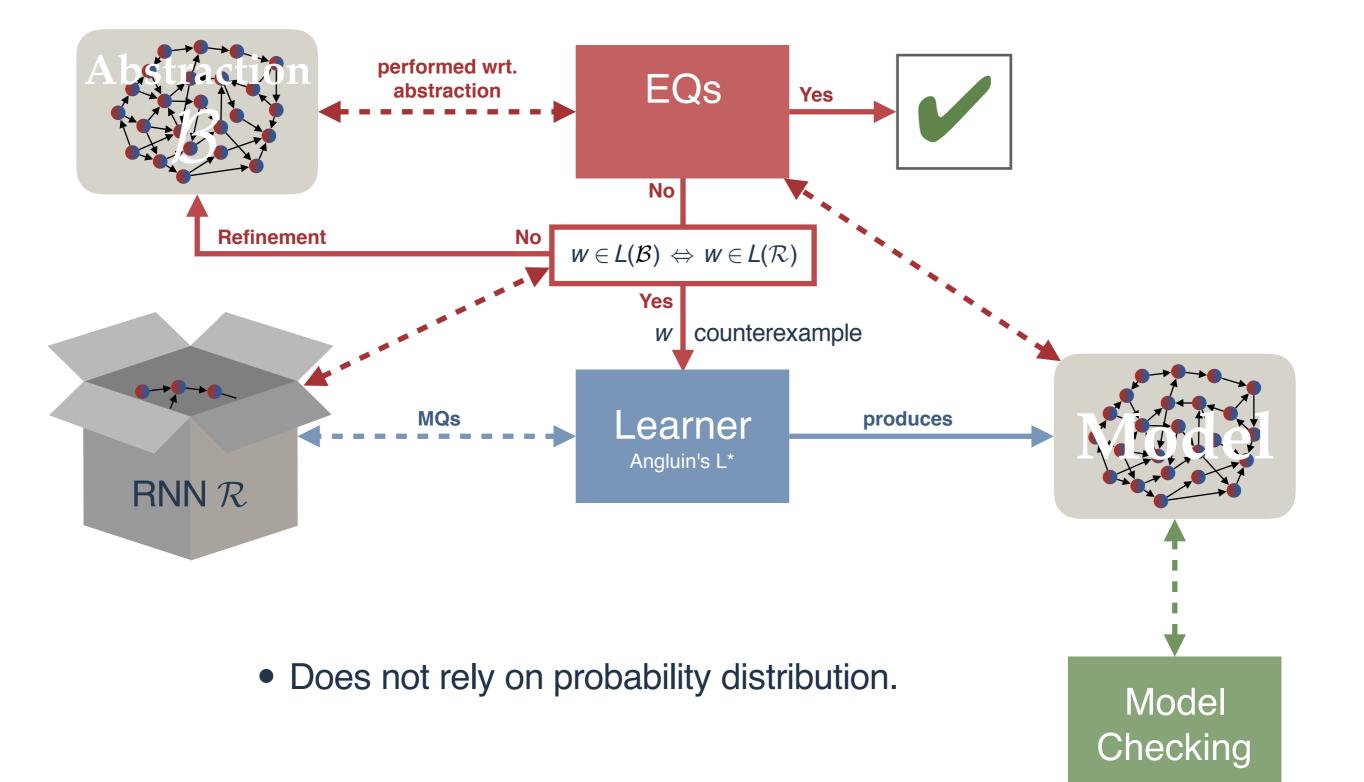


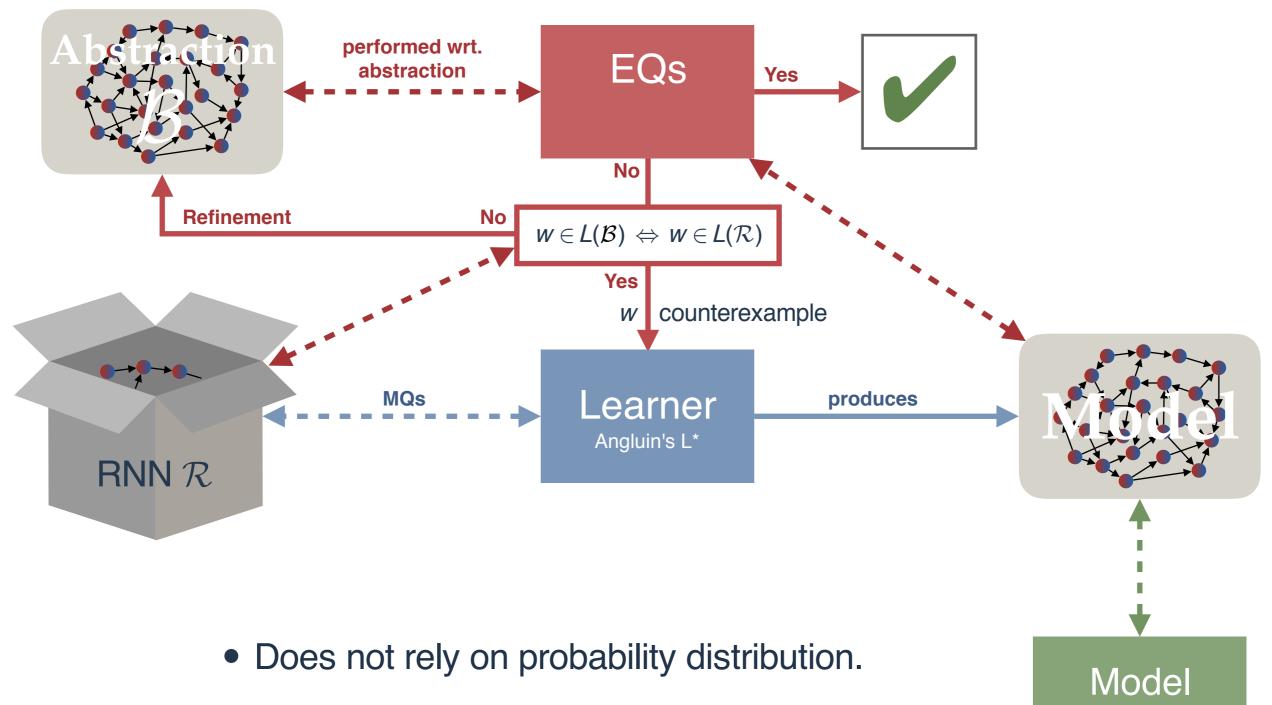












• But counterexample may be spurious.

Depends on the quality of the abstraction.

[Weiss, Goldberg, Yahav: Extracting Automata from Recurrent Neural Networks Using Queries and Counterexamples. ICML 2018]

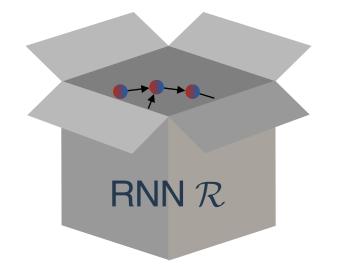
Checking

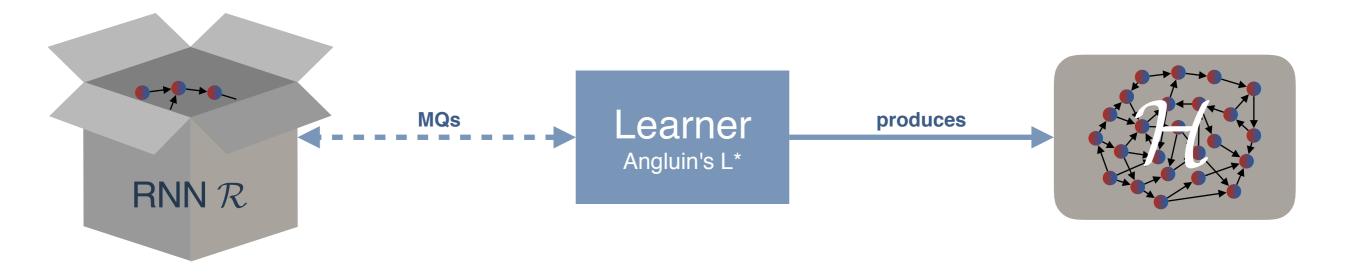
Checked on 30 DFAs / RNNs and 138 specifications:

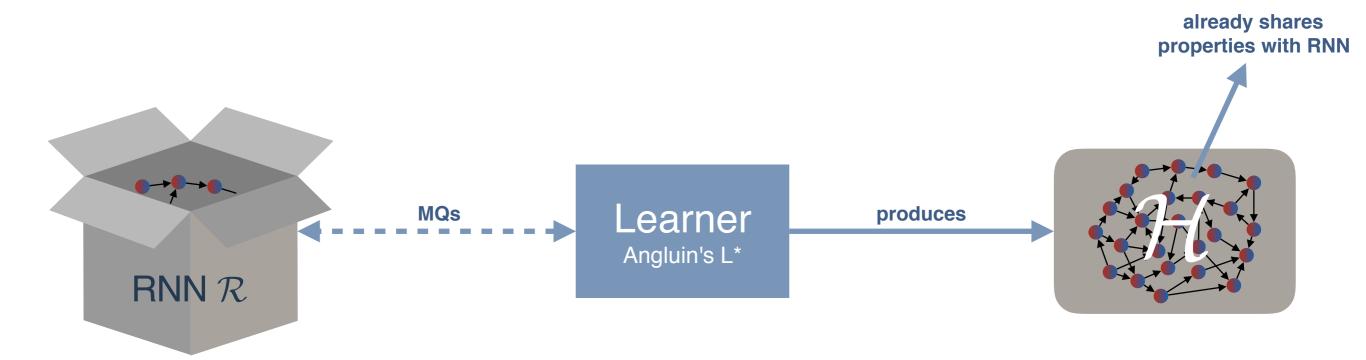
Type	Avg time (s)	$Avg \ len$	# Mistakes	$Avg \ MQs$
SMC	92	111	122	286063
AAMC	444	7	30	3701916

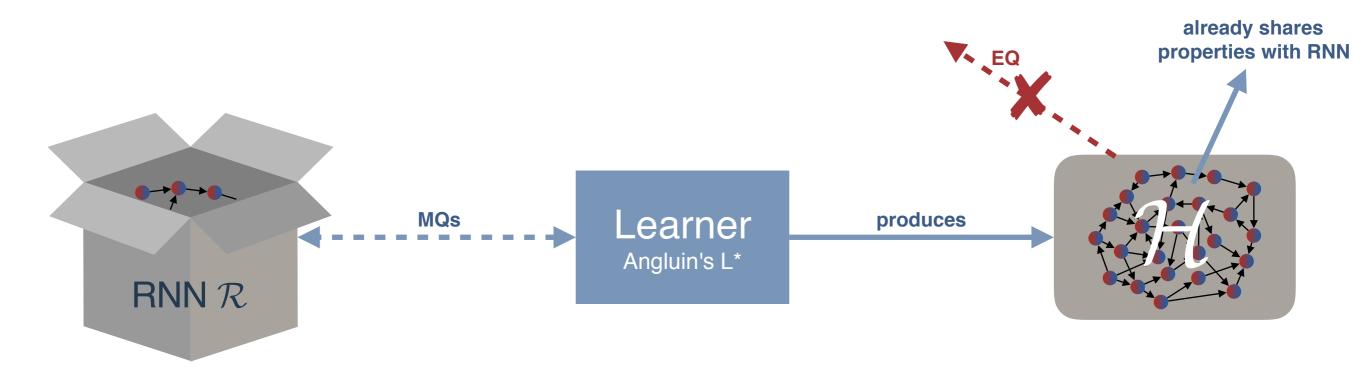
Checked on 30 DFAs / RNNs and 138 specifications:

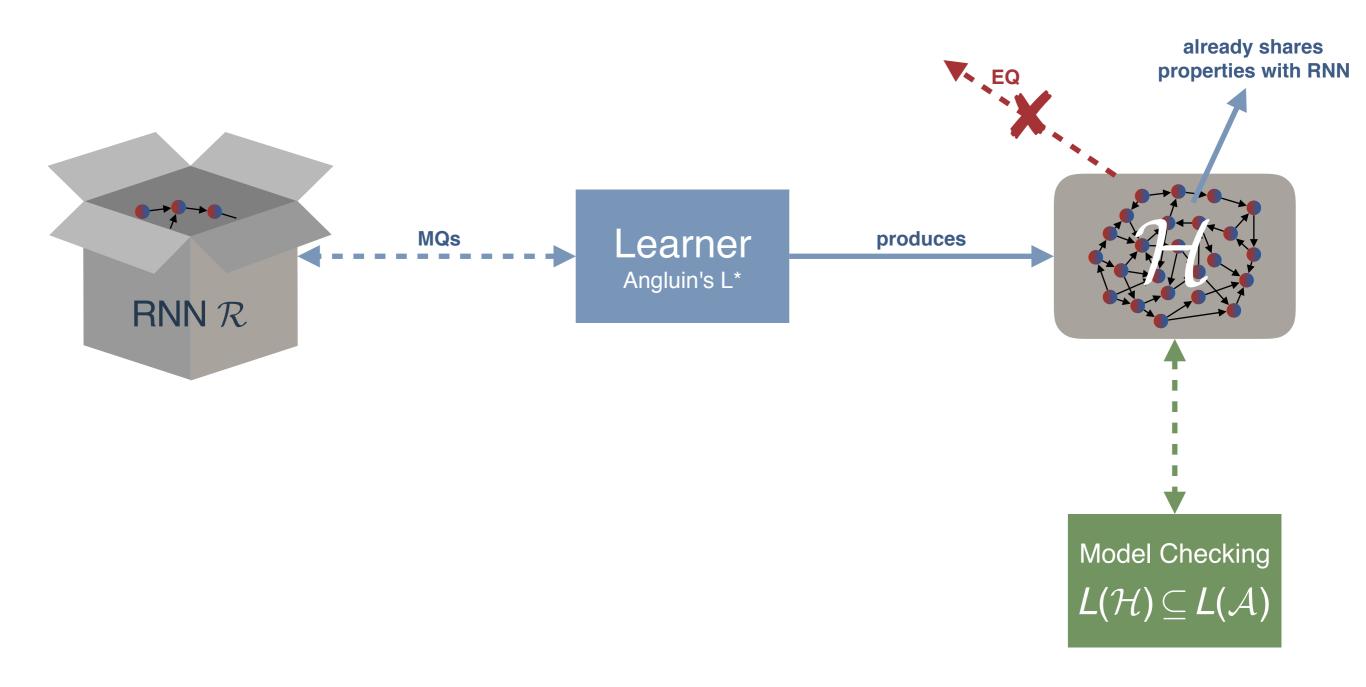
Type	Avg time (s)	$Avg \ len$	# Mistakes	$Avg \ MQs$
SMC	92	111	122	286063
AAMC	444	7	30	3701916



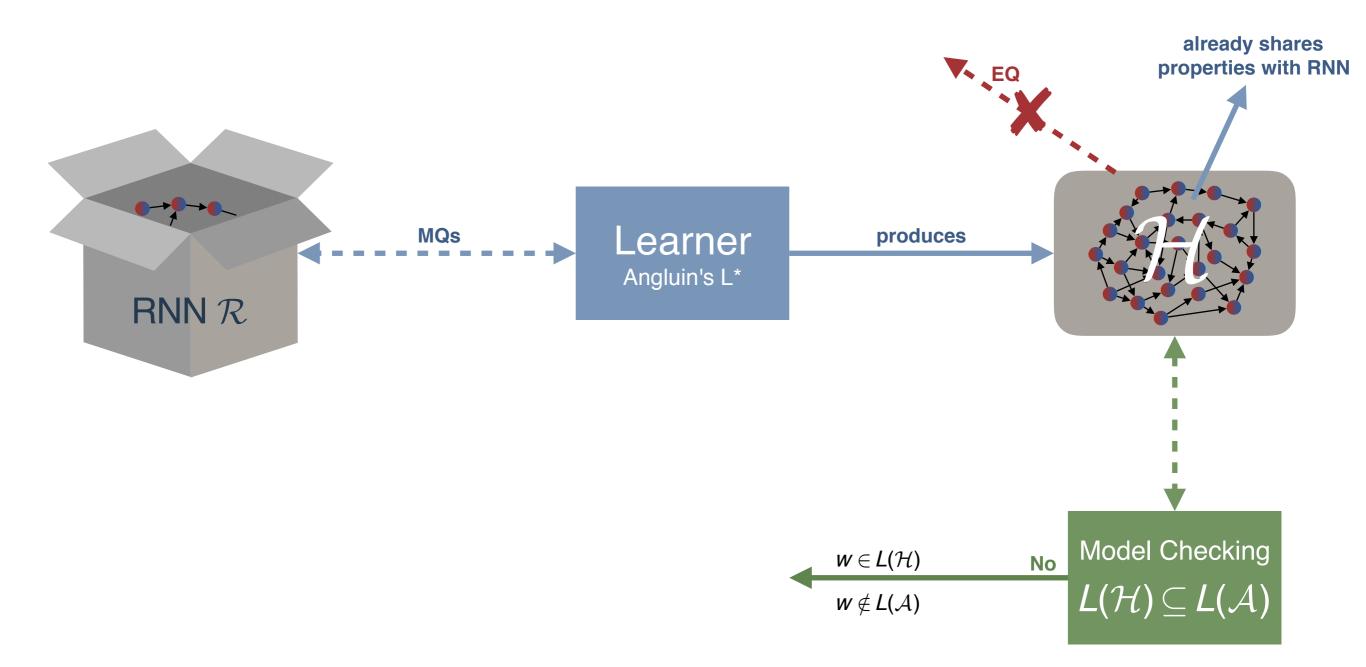




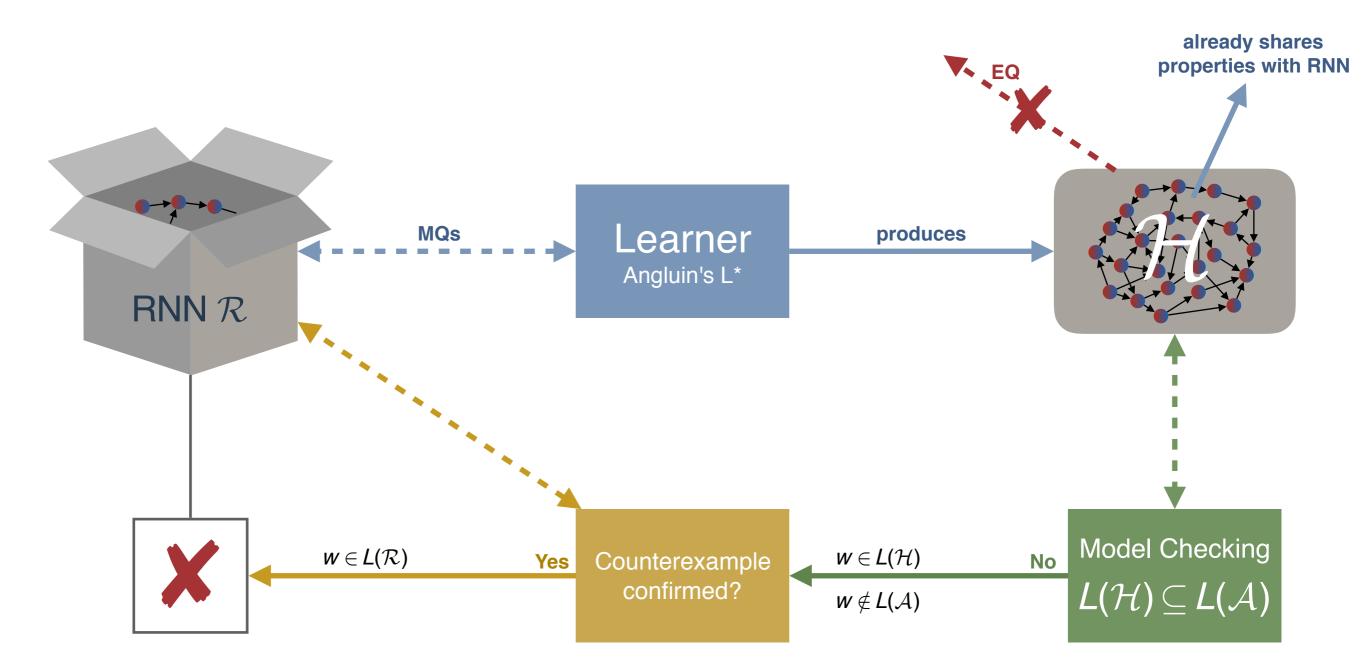




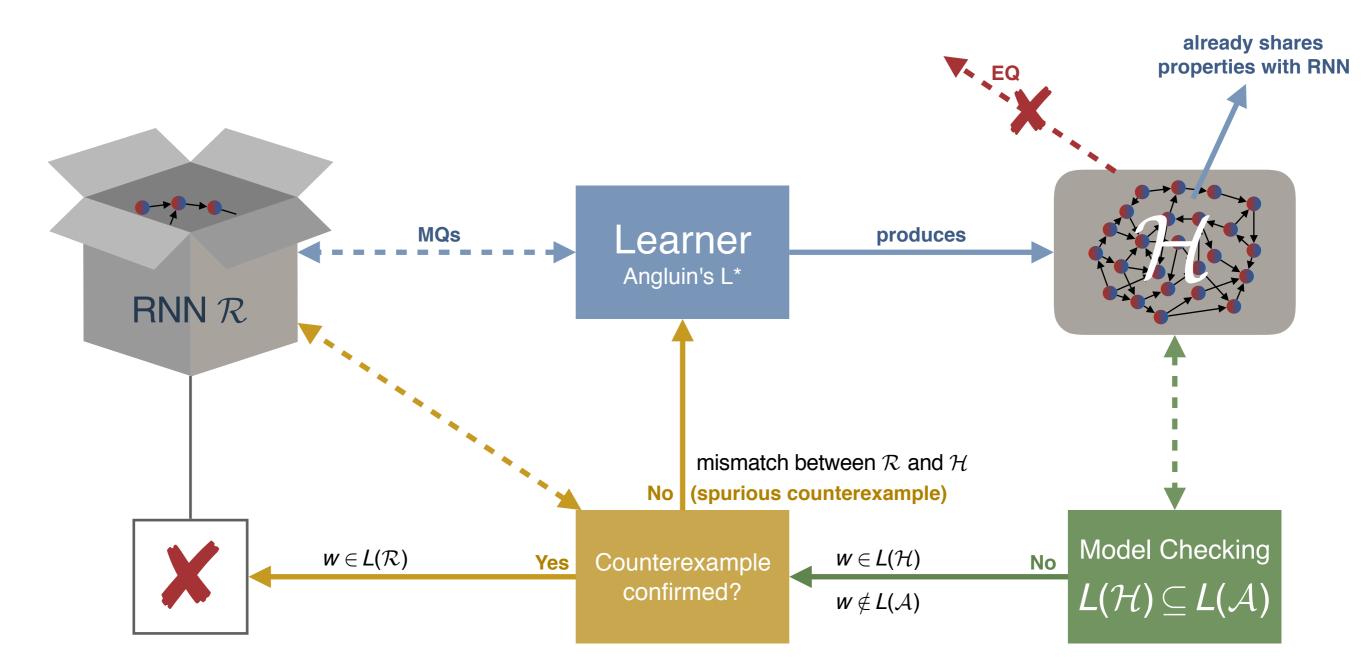
Property-directed verification (PDV)

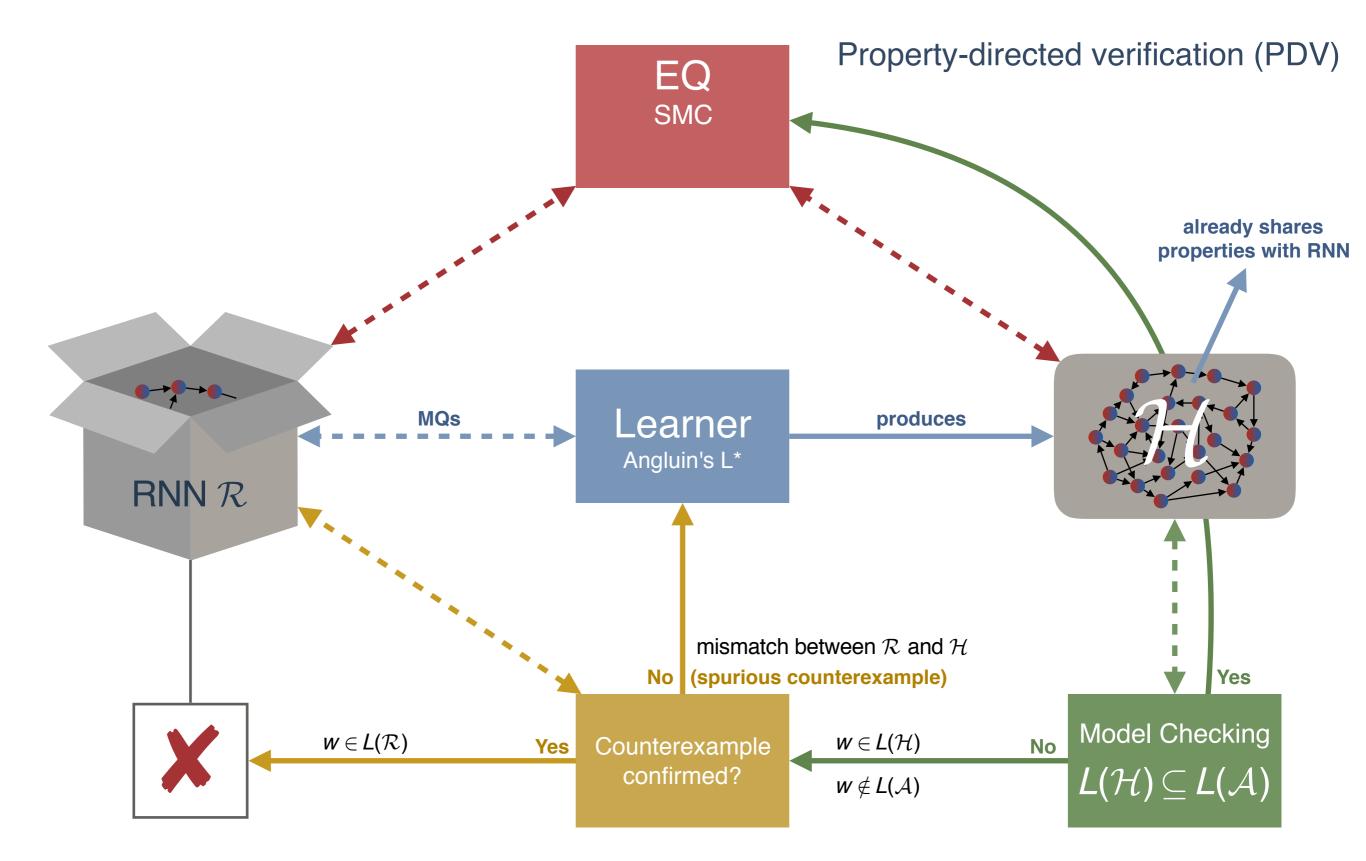


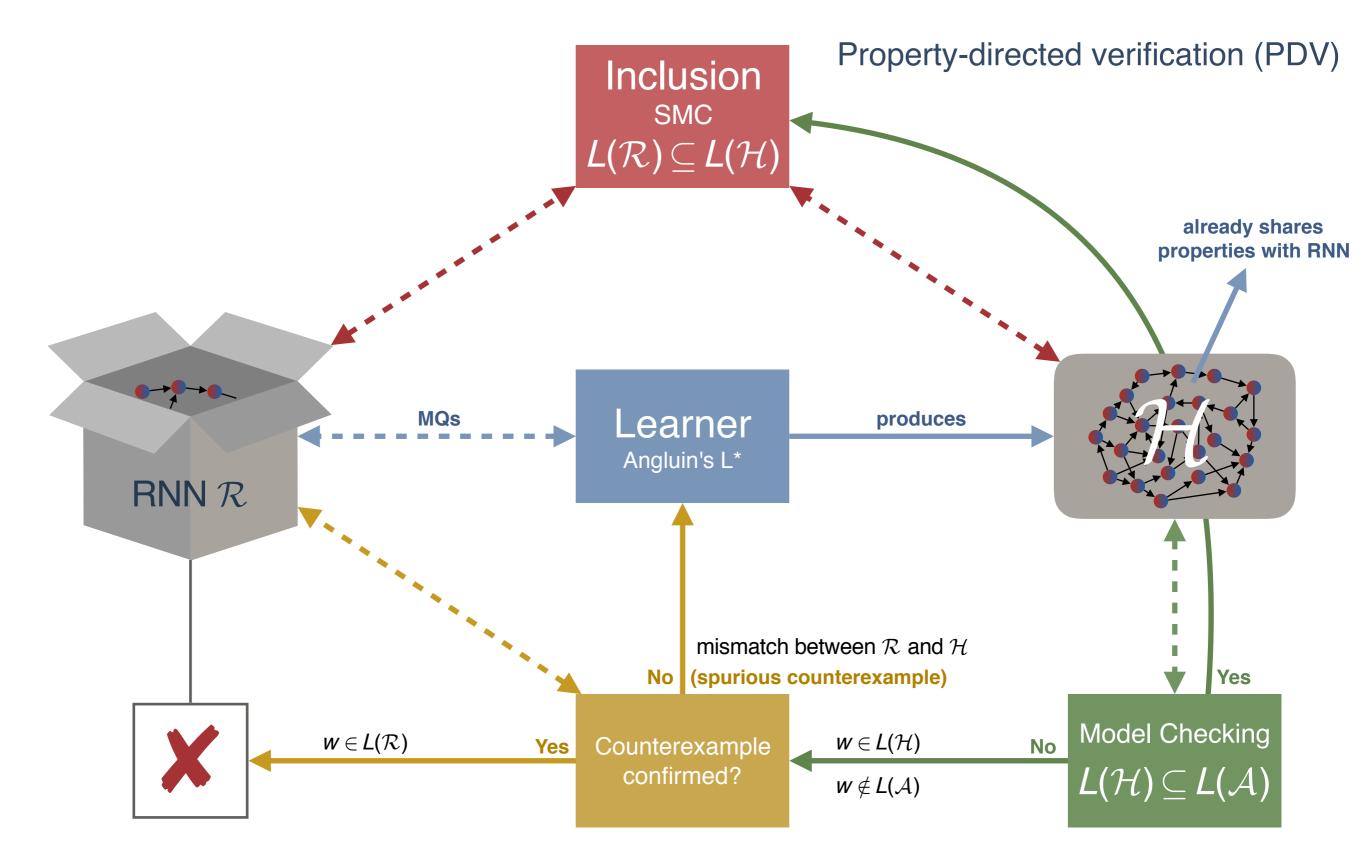
Property-directed verification (PDV)

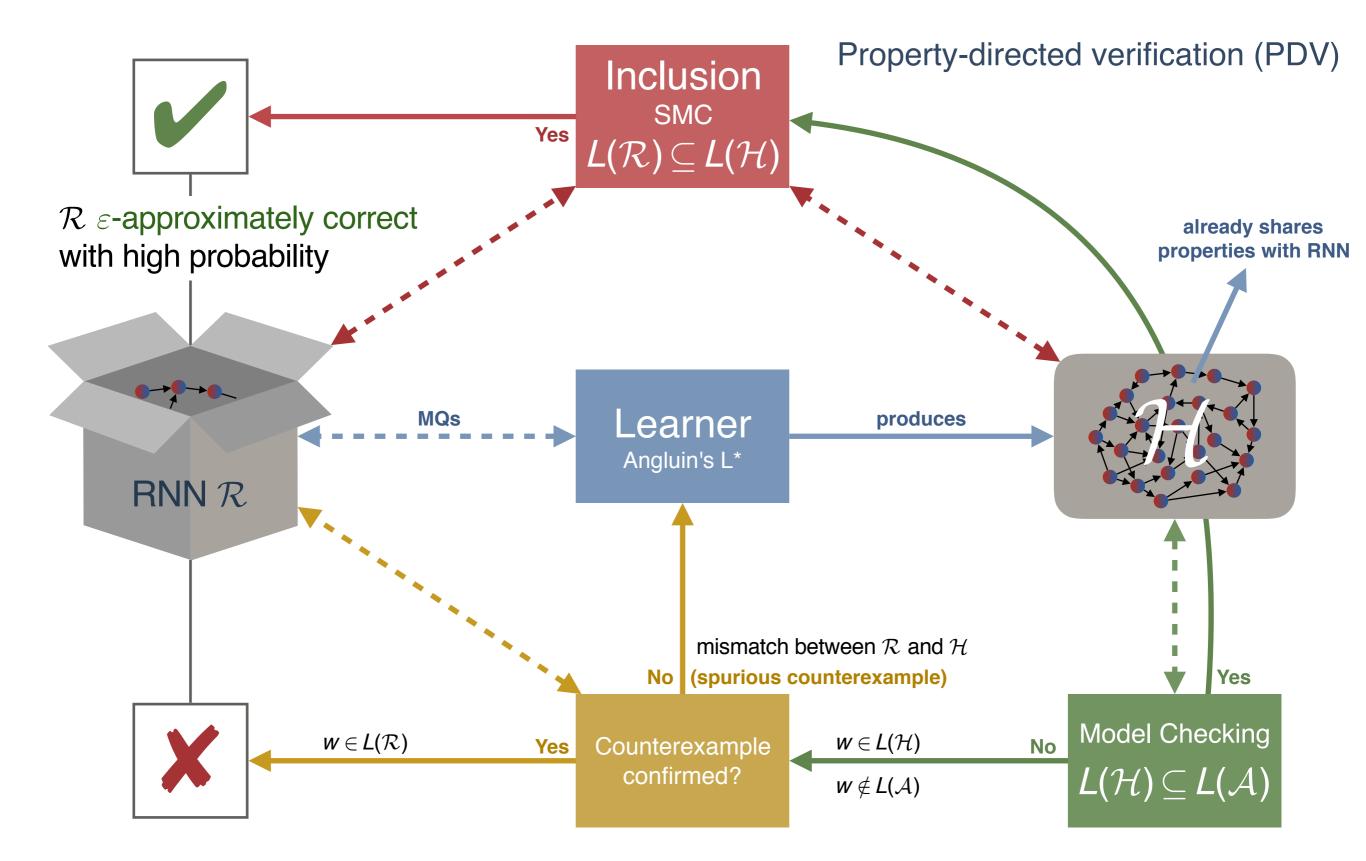


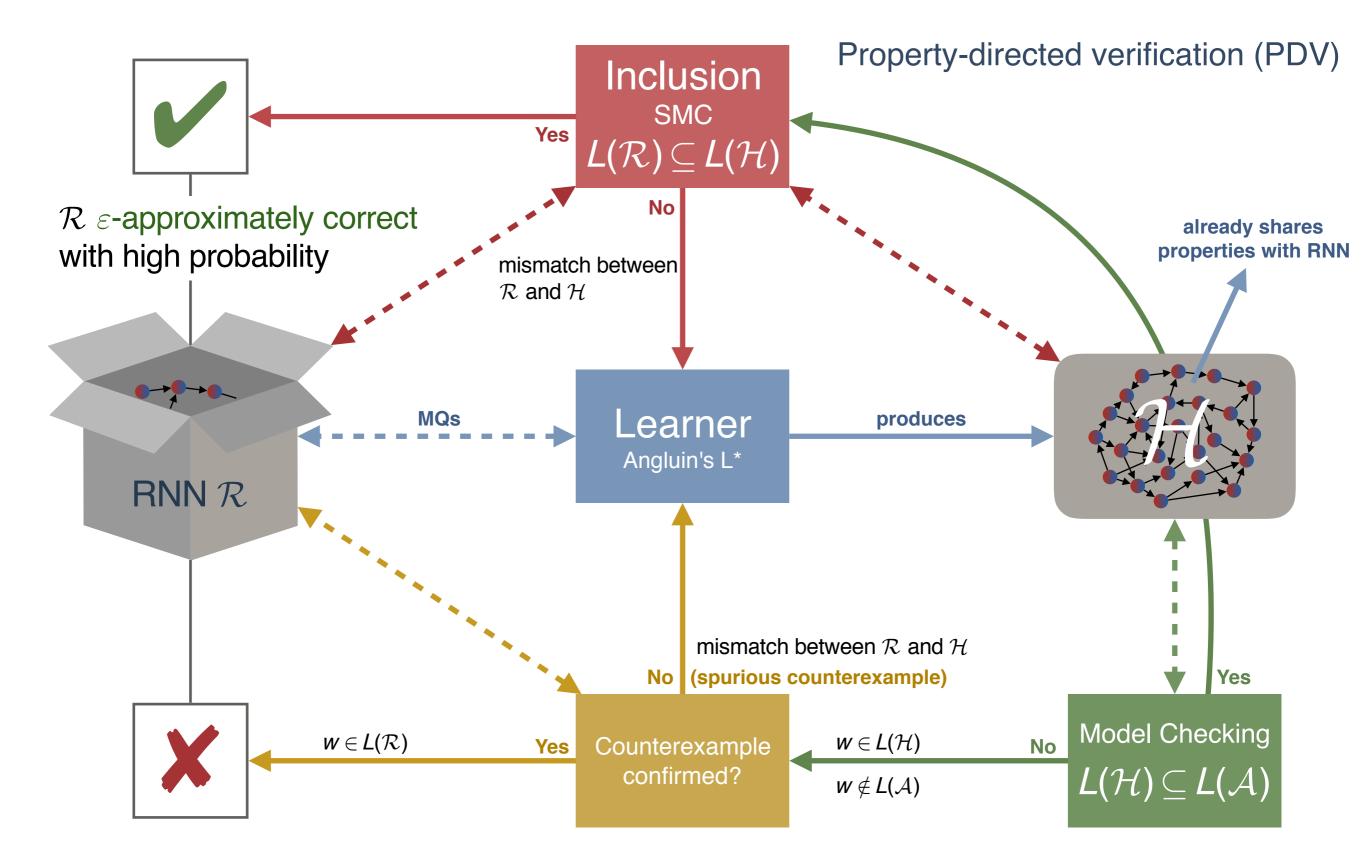
Property-directed verification (PDV)









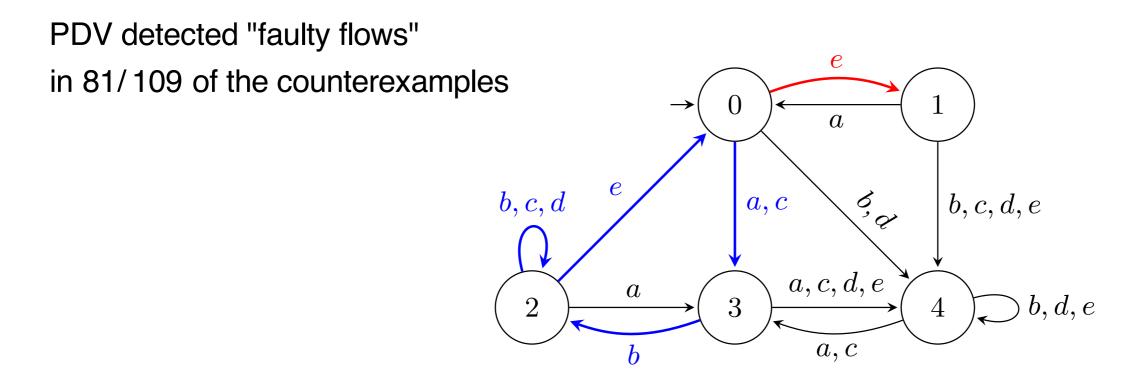


Type	Avg time (s)	$Avg \ len$	# Mistakes	$Avg \ MQs$
SMC	92	111	122	286063
AAMC	444	7	30	3701916
PDV	21	11	109	28318

Checked on 30 DFAs / RNNs and 138 specifications:

Type	Avg time (s)	$Avg \ len$	$\# \ Mistakes$	Avg MQs
SMC	92	111	122	286063
AAMC	444	7	30	3701916
PDV	21	11	109	28318

Checked on 30 DFAs / RNNs and 138 specifications:



1. Extraction of finite-state information from RNNs contributes to their understanding and verification.

- 1. Extraction of finite-state information from RNNs contributes to their understanding and verification.
- 2. Property-directed verification (PDV) is able to find short counterexamples fast.

- 1. Extraction of finite-state information from RNNs contributes to their understanding and verification.
- 2. Property-directed verification (PDV) is able to find short counterexamples fast.

Conclusion and Outlook

1. Practical applications of PDV?

- 1. Extraction of finite-state information from RNNs contributes to their understanding and verification.
- 2. Property-directed verification (PDV) is able to find short counterexamples fast.

Conclusion and Outlook

- 1. Practical applications of PDV?
- 2. Verification of RNN-based agent environment systems?

- 1. Extraction of finite-state information from RNNs contributes to their understanding and verification.
- 2. Property-directed verification (PDV) is able to find short counterexamples fast.

Conclusion and Outlook

- 1. Practical applications of PDV?
- 2. Verification of RNN-based agent environment systems?
- 3. Going beyond regular specifications: Inference of contextfree languages.

- 1. Extraction of finite-state information from RNNs contributes to their understanding and verification.
- 2. Property-directed verification (PDV) is able to find short counterexamples fast.

Conclusion and Outlook

- 1. Practical applications of PDV?
- 2. Verification of RNN-based agent environment systems?
- 3. Going beyond regular specifications: Inference of contextfree languages.

Thank you!