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• May require many queries.

• Relies on probability distribution.
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Automaton abstraction & model checking (AAMC)

RNN R
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• Counterexample may be spurious.

• Relies on probability distribution.

not guaranteed
to terminate anymoreL(R) not necessarily regular

As EQs are implemented by SMC, a "counterexample" may be classified by RNN as negative.
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Table 1. Experimental results

Type Avg time (s) Avg len # Mistakes Avg MQs

SMC 92 111 122 286063
AAMC 444 7 30 3701916
PDV 21 11 109 28318

Mistakes is the number of random instances for which a mistake was found, and (iv) Avg MQs is the average
number of membership queries asked to the RNN.

Note that not only is PDV faster and finds more errors than AAMC, the average number of states of the
final DFA is also much smaller: 26 states with PDV and 319 with AAMC.

Comparing PDV to SMC, it is 4.5 times faster and it asked 10 times less MQs from the RNN, even though
it found a little less mistakes. The time difference can become even more apparent if PDV was implemented
in something other than Python. Another observation is that the length of the counter examples are much
smaller in PDV.

Faulty Flows. One of the advantages of extracting DFAs in order to detect mistakes in a given RNN is the
possibility to find not only one mistake but a “faulty flow”. For example, Figure 2 shows one DFA extracted
with PDV, based on which we found a mistake in the corresponding RNN. The counter example we found
was (a, b, c, e, e). One can see that the word (a, b, c, e) is a loop in the DFA. Hence we can suspect that this
could be a “faulty flow”. Checking the words wn = (a, b, c, e)n(e) for n 2 [1..100], we observed that for any
n 2 [1..100] the word wn was in the RNN language but not in the specification.

Fig. 2. Faulty Flow in DFA extracted through PDV
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To automate the reasoning above, we did the following: Given an RNN R, a specification A, the extracted
DFA H, and the counter example w:

1. Build the cross product DFA: A⇥ = A⇥H.

2. For every prefix w1 of the counter example w = w1w2, denote by sw1 the state to which the prefix w1

leads in A⇥. For any loop ` starting from sw1 , check if wf
n = w1`nw2 is a counter example for n 2 [1...100].

3. If wf
n is a counter example for more than 20 times, declare “found a faulty flow”.

Using this procedure, we managed to find faulty flows in 81/109 of the counterexamples that were found by
PDV.

RNNs Identifying Contact Sequences. Contact tracing [13] has proven to be increasingly effective in curbing
the spread of infectious diseases. In particular, analyzing contact sequences—sequences of individuals who
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Experimental results

Checked on 30 DFAs / RNNs and 138 specifications:Table 1. Experimental results

Type Avg time (s) Avg len # Mistakes Avg MQs

SMC 92 111 122 286063
AAMC 444 7 30 3701916
PDV 21 11 109 28318

Mistakes is the number of random instances for which a mistake was found, and (iv) Avg MQs is the average
number of membership queries asked to the RNN.

Note that not only is PDV faster and finds more errors than AAMC, the average number of states of the
final DFA is also much smaller: 26 states with PDV and 319 with AAMC.

Comparing PDV to SMC, it is 4.5 times faster and it asked 10 times less MQs from the RNN, even though
it found a little less mistakes. The time difference can become even more apparent if PDV was implemented
in something other than Python. Another observation is that the length of the counter examples are much
smaller in PDV.

Faulty Flows. One of the advantages of extracting DFAs in order to detect mistakes in a given RNN is the
possibility to find not only one mistake but a “faulty flow”. For example, Figure 2 shows one DFA extracted
with PDV, based on which we found a mistake in the corresponding RNN. The counter example we found
was (a, b, c, e, e). One can see that the word (a, b, c, e) is a loop in the DFA. Hence we can suspect that this
could be a “faulty flow”. Checking the words wn = (a, b, c, e)n(e) for n 2 [1..100], we observed that for any
n 2 [1..100] the word wn was in the RNN language but not in the specification.

Fig. 2. Faulty Flow in DFA extracted through PDV
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To automate the reasoning above, we did the following: Given an RNN R, a specification A, the extracted
DFA H, and the counter example w:

1. Build the cross product DFA: A⇥ = A⇥H.

2. For every prefix w1 of the counter example w = w1w2, denote by sw1 the state to which the prefix w1

leads in A⇥. For any loop ` starting from sw1 , check if wf
n = w1`nw2 is a counter example for n 2 [1...100].

3. If wf
n is a counter example for more than 20 times, declare “found a faulty flow”.

Using this procedure, we managed to find faulty flows in 81/109 of the counterexamples that were found by
PDV.

RNNs Identifying Contact Sequences. Contact tracing [13] has proven to be increasingly effective in curbing
the spread of infectious diseases. In particular, analyzing contact sequences—sequences of individuals who
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in something other than Python. Another observation is that the length of the counter examples are much
smaller in PDV.

Faulty Flows. One of the advantages of extracting DFAs in order to detect mistakes in a given RNN is the
possibility to find not only one mistake but a “faulty flow”. For example, Figure 2 shows one DFA extracted
with PDV, based on which we found a mistake in the corresponding RNN. The counter example we found
was (a, b, c, e, e). One can see that the word (a, b, c, e) is a loop in the DFA. Hence we can suspect that this
could be a “faulty flow”. Checking the words wn = (a, b, c, e)n(e) for n 2 [1..100], we observed that for any
n 2 [1..100] the word wn was in the RNN language but not in the specification.

Fig. 2. Faulty Flow in DFA extracted through PDV
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To automate the reasoning above, we did the following: Given an RNN R, a specification A, the extracted
DFA H, and the counter example w:

1. Build the cross product DFA: A⇥ = A⇥H.

2. For every prefix w1 of the counter example w = w1w2, denote by sw1 the state to which the prefix w1

leads in A⇥. For any loop ` starting from sw1 , check if wf
n = w1`nw2 is a counter example for n 2 [1...100].

3. If wf
n is a counter example for more than 20 times, declare “found a faulty flow”.

Using this procedure, we managed to find faulty flows in 81/109 of the counterexamples that were found by
PDV.

RNNs Identifying Contact Sequences. Contact tracing [13] has proven to be increasingly effective in curbing
the spread of infectious diseases. In particular, analyzing contact sequences—sequences of individuals who
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Thank you!


