
July 11th, 2018

DATAIA – JST INTERNATIONAL SYMPOSIUM ON DATA SCIENCE AND AI



Run time log n
Binary search

√n n
Linear search

n log n
Sorting

n2
Shortest path

n3
Max flowData size

n=1000 10 30 1000 1000 106 109

n=106 20 1000 106 2×107 1012 1018

≒317 years

n=109(# of 
Web servers)

30 30000 109 3×1010

≒300 Sec.
1018

≒317 years

n=1012 40 106 1012 =10000 Sec. 4×1013

≒111 hours

n=1015 50 3×107 1015

107 Sec.≒110days
5×1016

≒5500 days

n=1018 60 109 

≒10 Sec.
1010 Sec
≒317years.

6×1019 ≒19000 
years

(※)Assumption: 
108 calculations need 1 second.

• For a huge size of big data, polynomial time 
algorithm paradigm becomes obsolete. Sublinear Time Paradigm 

• So, we propose a new paradigm 



Foundations of  Algorithm Theory for  BIG DATA

1. Foundations of Sublinear Time 
Algorithm (Katoh group)

2. Foundations of Sublinear Data 
Structures (Shibuya group)

3. Foundations of Sublinear 
Modeling  (Tanaka group)

P r o j e c t  O v e r v i e w
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Team A: Sublinear Time Algorithm approach (Katoh group)



Major results of Team A (Katoh Group)

A1. Constant time algorithm for complex network

A2. Protein function analysis by combinatorial rigidity theory



Web Graph

What is a constant-time algorithm?

How do we evaluate BIG DATA, e.g. web graphs?

Read only O(1) data

Approximate properties or parameters (e.g., connectivity, cluster coefficient, 
average node-to-node distance, page rank, …)

The base technology for the big-data era!



Two paradigms in the big-data era: 
Constant-time and polynomial-time

Physics:
• Newtonian mechanics (17st --): necessary for normal physical calculation.
• Theory of relativity (20st--): necessary for the ultrahigh-speed situation.

Computing:
• Polynomial-time algorithms (1950’s --): necessary for normal computing.
• Constant-time algorithms (1990’ --): necessary for the big-data era.

Both are necessary

Both are necessary

Analogy



Constant-time algorithms for complex networks:
background and main result

samplingsampling A traditional technique for treating big-data 
(e.g., statistics, machine learning)

Apply it to complex problems, e.g. graphs 

Constant-Time AlgorithmsConstant-Time Algorithms Appeared on 1990’s
[Rubinfeld & Sudan, SODA92][Goldreich et. al, FOCS95]

• Evaluate properties of given graphs very fast through sampling
• Efficiency is proven theoretically

Constant-time algorithms are developed rapidly in 21st.  But...
We have been able to treat dense or bounded degree graphs only.

In our project, we extend the testable graph class to
a wider class including complex networks [Ito, ESA2016]



Major Results of Team A

A1. Constant Algorithms for Complex Networks

A2. Protein function analysis by combinatorial rigidity theory



Sequence Structure Flexibility and 
Dynamics Function

Why study protein flexibility and dynamics?

“Movement is the cause of all life.”
Leonardo da Vinci

VERY HARD

• Flexibility/rigidity critical for protein function
• Experiments are expensive, slow and give limited information
• Molecular Dynamics is too slow and often impractical
• Rigidity theoretical approach fastest, can also be used to 

speed up simulations           
(Plos One Sljoka et al 2015)

X-ray Crystallography 
NMR

EASY

Protein Function Analysis by Combinatorial Rigidity Theory



Molecular Dynamics 
Simulations

FUNCTION, Allostery

RIGIDITY THEORY METHODS

Key difficulties in studying protein flexibility: Proteins motions occur 
on many time scales



Major Results

1. The Role of Dimer Asymmetry and Protomer Dynamics in Enzyme 
Catalysis (Science 2017)
2. Mechanistic insights into allosteric regulation of the A2A adenosine 
GPCR (G protein-coupled receptor) by physiological cations 
(Nature Communication 2018)

３．Repertoire Analysis of Antibody CDR-H3 Loops Suggests Affinity 
Maturation Does Not Typically Result in Rigidification (Frontiers in 
Immunology 2018)



Allosteric communication in 
GPCRs by mechanical 
propagation in rigidity / 
transmission in DOF

•Largest group of receptors, respond to 
drugs, hormones, neurotransmitters, …
• Humans have over 800 GPCRs
•Naturally allosteric but allosteric 
mechanism not well understood

Signal transduction usually 
regulated by the type of bound 
extracellular ligand at orthosteric
site (i.e. agonist, antagonist etc.) 
and/or allosteric sites

How cells achieve signaling. 
A story of GPCRs 



Novel application: Cations (calcium, magnesium, 
sodium) are key allosteric modulators of GPCR 
signaling and likely play a role in serving as switches 
in the activation process

Center for Nonlinear Studies, Los Alamos 
Department of Pharmacology, UCSD

Joint work with Scott Prosser, University of Toronto

Activation of A2A adenosine G-protein-
coupled receptor by Ca2+ and Mg2+

Mechanistic Insights into 
Allosteric Regulation of the 
A2A Adenosine G-Protein-
Coupled Receptor by 
Physiological Cations,
Ye, Sljoka, Tsuchimura, 
Prosser et al Nature 
Communication, 2018



Detection of allosteric hotspots

Positive allosteric modulation of A2AR by Mg2+ and Ca2+ cations

Most 
Transmission

Least 
Transmission

Mechanistic Insights into Allosteric Regulation of the A2A
Adenosine G-Protein-Coupled Receptor by Physiological 
Cations,
Ye, Sljoka, Tsuchimura, Prosser et al Nature Communication, 
2018



New sublinear data structure 
paradigms for Big Data

Team D: Sublinear Data Structure Research from 3 Approaches
Information Theory-based Approach Enumeration-based Approach

o(I) indexing / 
computation?

Big Data 
of Size n

o(n) -size 
Indexing

O(I) 
compression

(I: information 
quantity)

Sublinear-size 
representation?

Description for 
enumeration

Enumerated outputs of 
"big-data size"

Big Data with 
"Well-structured Data"

How to enumerate?
How to represent?

How to index?
How to compress?

New 
paradigm

Sadakane

Takeda
Sakamoto

Kida Shibuya

Nakano

Application-based Approach
Shibuya

Sadakane

Yada

Tanigawa
Sakamoto

Protein 3-D data
NGS data
POS/sensor data

ATTCAGCGTAAGGCCATTG
CGATAGCCTTAAGCGCTAA
AGTCGTGGCGCCTATCGAT
CTTGGACATTAACGCTCTG
TAACTACAGGTAGCGGTAT
CGATCATCGTATTCTGATT
CTTCTATCTTCATGGTGCT
GCTGGTATACTCTACCCTC
TGGTGCATCAATAATCTCC
GTGCTATCCAATAGGCTTT
GCGCACTGAT

Yamagiwa



Achievements
• Deep Theories for Compression

• Small memory compression methods (Sakamoto 2015, 2016, 2017, Kida 2016, 
2017, 2018, Sadakane 2016, 2017)

• Big-Data Applications
• Security data structure designed for massive data

• Succinct ORAM (Oblivious Random Access Memory)   (Onodera, Shibuya, STACS 2018)
• IoT/Big-data Communication

• Optimal-space fully-online grammar compression (Takabatake, I, Sakamoto, ESA 2017)
• Real-time compression/decompression on FPGA for IoT communications (Yamagiwa, 

Marumo, Sakamoto, VLDB/BPOE 2016) Best Paper Award
• Network Algorithms

• Succinct Index for connectivity query on dynamic graphs (Nakamura, ISAAC 2017) Best 
Student Paper

• Bioinformatics
• Protein structure matching/indexing (Shibuya, 2015, 2016) IPSJ Yamashita Award
• NGS data analysis (Sadakane, Shibuya, 2015)



Application to FPGA-based Low-Cost Communication

• Hardware implementation
• Very low cost FPGA

• Small circuit size  / 1CPU time compression

100~1000 times scalability

• Based on small-memory online self-index
• High performance compression
• Small FPGA memory space
• Online construction
• Supports search and partial extraction Embedded Technology 2015 Special Award

VLDB BPOE workshop best-paper award

Platform of stream 
computing in IoT Era

[Yamagiwa, Marumo, Sakamoto, VLDB/BPOE 2016, Best Paper Award]



Succinct Oblivious RAM [Onodera, Shibuya STACS 2018]

• The first ORAM with ( ) 
access time and sublinear 
storage overhead

• Practical performance
• Needs only 1/100 - 1/4  of the 

path ORAM/Ring ORAM storage 
overhead 

Access Storage 
overhead

Square Root ORAM
Goldreich. STOC87

( )
amortized ( )

Path ORAM
Stefanov et al. CCS13

O(log2 N) >10N

Ours O(log2 N)
log loglog .

read/write
to M

RAM M block

ORAM

translates
to 

read/write
to M'

RAM M'



BIG DATA

• Coarse graining of Information based on statistical mechanics and machine learning
• Developing efficient approximate algorithms by combining algorithm theory and statistical mechanics 

C r e a t e  a n e w  s c h e m e  o f  s u b l i n e a r m o d e l i n g fo r  B i g  D a t a

probabilistic
system

result

small data

BIG DATA

small data

NEW PARADIM of Sublinear modeling
using Statistical Mechanics, 

Machine Learning,
and

Approximation

Finding hierarchical structure
of BIG DATA

and
Important feature detection

from BIG DATA

Structure inference of (hierarchical) MRF for BIG DATA 
using Statistical Mechanical and Machine Learning techniques

(hierarchical) Markov Random Field for BIG DATA(hierarchical) Markov Random Field for BIG DATA

our strategy
for Sublinear 

Modeling

Team M: Sublinear Model ing from Statist ical  Mechanics 



Sublinear Time Inference using Loopy Belief Propagation for Markov Random Fields

Source vector

Data vector 1

Data vector 2

Data vector 3

Data vector M

・
・
・

Inference of Source Vector 1

Inference of Source Vector 2

Inference of Source Vector 3

Inference of Source Vector M

・
・
・

Numerical Experiments by Loopy 
Belief Propagation

Average Performance
of System

sample average
of qualities of outputs 

noise

Input Output

Muneki Yasuda, Shun Kataoka and Kazuyuki 
Tanaka: Statistical analysis of loopy belief 
propagation in random fields, 
Phys. Rev. E, Vol.92, pp.042120, 2015.

1O M O
Sample average for M data vectors 
has been reduced to analytical 
calculation 
for statistical average of 
performance

Analytical Estimation by 
Replica Loopy 

Belief Propagation



Approach from Quantum Computation to Big Data Analysis

Issues

Approach

Results

• Quantum annealing machine is a special purpose device
for combinatorial optimization problems

• High power saving performance
• Short computational time is expected

Digital computer Quantum computer

Query

Response

• Is quantum annealing useful for real-world problems?
• What type of problems can be solved efficiently?

How about problems in big data analysis

Community detection
Matrix interpolation

• Framework of quantum annealing is applied to 
community detection and matrix interpolation

• Compare the performance of simulated quantum 
annealing method (SQA) and the conventional 
simulated annealing method (SA).

• SQA outperforms SA.
• This indicates a positive 

proof that if we can use 
D-Wave we may have a 
better result 



Statistical-Mechanical Analysis of 
Compressed Sensing
for Hamiltonian Estimation
of Ising Spin Glass
Chako Takahashi*, Masayuki Ohzeki*, Shuntaro Okada*†,
Masayoshi Terabe†, Shinichiro Taguchi†, Kazuyuki Tanaka*

* Graduate School of Information Sciences, Tohoku University
† DENSO CORPORATION



Background and Contribution
Machines dedicated to solving combinatorial optimization problems by 
utilizing quantum fluctuation (e.g. D-Wave 2000Q) have recently appeared
- The structure of the machines is sparse Ising Hamiltonian (sparse cost 

function)
- The unknown parameters of the Ising Hamiltonian must be determined to 

input problems into the machines − this is a nontrivial task!
- A general-purpose method that expresses real-world problems as sparse 

Ising Hamiltonian is needed

We propose the Hamiltonian estimation as the L1-norm minimization
and give the theoretical guarantee of the performance of the L1-norm 
minimization



Problem Setting and Formulation
Ising Hamiltonian (cost function)                     energy value

Hamiltonian estimation

observed data

true coupling constants 
(unknown)



When does the L1-norm minimization gives “good” solutions?
good: low mean squared error (MSE)

We analyze the behavior of the estimation
via replica method [Mezard et al., 1987]

The performance evaluation of the estimation can be done in sublinear 
time!

Theoretical Analysis of The Estimation



Numerical Verification
We solve the L1-norm minimization quantitatively
via alternating direction methods of multipliers [Boyd et al., 2011]

Our theoretical analysis can be considered to be valid!

theoretical 
reconstructio
n
limit


