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* For a huge size of big data, polynomial time * So, we propose a new paradigm

algorithm paradigm becomes obsolete.
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Project Overview

Foundations of Algorithm Theory for BIG DATA
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Team A: Sublinear Time Algorithm approach (Katoh group)
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Major results of Team A (Katoh Group)

Al. Constant time algorithm for complex network

A2. Protein function analysis by combinatorial rigidity theory



What is a constant-time algorithm?

How do we evaluate BIG DATA, e.g. web graphs?

Read only O(1) data

Web Graph

Approximate properties or parameters (e.g., connectivity, cluster coefficient,
average node-to-node distance, page rank, ...)

The base technology for the big-data era!



Two paradigms in the big-data era:
Constant-time and polynomial-time

Physics:

* Newtonian mechanics (17st --): necessary for normal physical calculation.

* Theory of relativity (20st--): necessary for the ultrahigh-speed situation.

Analogy

Computing:
* Polynomial-time algorithms (1950’s --): necessary for normal computing.

* Constant-time algorithms (1990’ --): necessary for the big-data era.

Both are necessary




Constant-time algorithms for complex networks:
background and main result

A traditional technique for treating big-data
(e.g., statistics, machine learning)

Apply it to complex problems, e.g. graphs

Constant-Tlme Al - orithms 2 [Rubinfeld & Sudan, SODA92][Goldreich et. al, FOCS95]

Evaluate properties of given graphs very fast through sampling
Efficiency is proven theoretically

Constant-time algorithms are developed rapidly in 21st. But...
We have been able to treat dense or bounded degree graphs only.

In our project, we extend the testable graph class to
a wider class including complex networks [I1to, ESA2016]




Major Results of Team A Algorithms

Al. Constant Algorithms for Complex Networks

A2. Protein function analysis by combinatorial rigidity theory



Protein Function Analysis by Combinatorial Rigidity Theory

Why study protein flexibility and dynamics?

Flexibility and
Sequence Structure .

EASY

VERY HARD

Primary structure
amino acid sequence

» “Movement is the cause of all life.”
Leonardo da Vinci

Tertiary structure

§PDB X-ray Crystallography
proTeiN paTA BANKk NMR
* Flexibility/rigidity critical for protein function
* Experiments are expensive, slow and give limited information
* Molecular Dynamics is too slow and often impractical
* Rigidity theoretical approach fastest, can also be used to
speed up simulations
(Plos One Sljoka et al 2015)



Key difficulties in studying protein flexibility: Proteins motions occur
on many time scales
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Major Results

1. The Role of Dimer Asymmetry and Protomer Dynamics in Enzyme
Catalysis (Science 2017)

2. Mechanistic insights into allosteric regulation of the A2A adenosine
GPCR (G protein—coupled receptor) by physiological cations
(Nature Communication 2018)

3. Repertoire Analysis of Antibody CDR-H3 Loops Suggests Affinity
Maturation Does Not Typically Result in Rigidification (Frontiers in
Immunology 2018)



Allosteric communication in How cells achieve signaling.

GPCRs by mechanical A story of GPCRs
propagation in rigidity / eLargest group of receptors, respond to
transmission in DOF drugs, hormones, neurotransmitters, ...
N  Humans have over 800 GPCRs
& extracellular

A T *Naturally allosteric but allosteric
% mechanism not well understood

intracellular

Inactive

Active

G protein-coupled receptor (blue)
bound to hormone (0/¢)
and a heterotrimeric G protein
(reddish to orange-brown)




Novel application: Cations (calcium, magnesium,
sodium) are key allosteric modulators of GPCR
signaling and likely play a role in serving as switches
in the activation process <

Activation of A,, adenosine G-protein-
coupled receptor by CaZ* and Mg?*

Mechanistic Insights into
Allosteric Regulation of the
A,, Adenosine G-Protein-
Coupled Receptor by
Physiological Cations,
Ye, Sljoka, Tsuchimura,
Prosser et al Nature
Communication, 2018

r
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Joint work with Scott Préssé}; University of Toronto

Center for Nonlinear Studies, Los Alamos
Department of Pharmacology, UCSD
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Positive allosteric modulation of A,,R by Mg?* and Ca?* cations

Mechanistic Insights into Allosteric Regulation of the A,
Adenosine G-Protein-Coupled Receptor by Physiological
Cations,

Ye, Sljoka, Tsuchimura, Prosser et al Nature Communication,
2018




Team D: Sublinear Data Structure Research from 3 Approaches

\ Information Theory-based Approach W ‘ Enumeration-based Approach
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Achievements

* Deep Theories for Compression

* Small memory compression methods (Sakamoto 2015, 2016, 2017, Kida 2016,
2017, 2018, Sadakane 2016, 2017)

e Big-Data Applications
 Security data structure designed for massive data
e Succinct ORAM (Oblivious Random Access Memory) (Onodera, Shibuya, STACS 2018)
* |0oT/Big-data Communication

e Optimal-space fully-online grammar compression (Takabatake, |, Sakamoto, ESA 2017)

* Real-time compression/decompression on FPGA for loT communications (Yamagiwa,
Marumo, Sakamoto, VLDB/BPOE 2016) Best Paper Award

* Network Algorithms

* Succinct Index for connectivity query on dynamic graphs (Nakamura, ISAAC 2017) Best
Student Paper

e Bioinformatics

* Protein structure matching/indexing (Shibuya, 2015, 2016) IPSJ Yamashita Award
* NGS data analysis (Sadakane, Shibuya, 2015)




Application to FPGA-based Low-Cost Communication
[Yamagiwa, Marumo, Sakamoto, VLDB/BPOE 2016, Best Paper Award]

Baseq on small-memory qnllne self-index | 1\ qware implementation
High performance compression
* Very low cost FPGA

Small FPGA memory space
* Small circuit size / 1CPU time compression

Online construction
Supports search and partial extraction [ Embedded Technology 2015 Special Award ]

. 100~1000 times scalability [ VLDB BPOE workshop best-paper award
Y/\ ) | o
X/\X X i ,'?f
AN N - i

input stream

grammar G equal to T

Platform of stream
] computing in loT Era
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Succinct Oblivious RAM  [0Onodera, Shibuya STACS 2018]
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Team M: Sublinear Modeling from Statistical Mechanics

* Coarse graining of Information based on statistical mechanics and machine learning
e Developing efficient approximate algorithms by combining algorithm theory and statistical mechanics

our strategy
result ’ for Sublinear

Modeling

NEW PARADIM of Sublinear modeling
using Statistical Mechanics,
Machine Learning,
and
Approximation

small data

probabilistic
system

Finding hierarchical structure
of BIG DATA
and
BIG DATA Important feature detection

(hierarchical) Markov Random Field for BIG DATA | LI ELCHRLY P

' small data

Structure inference of (hierarchical) MRF for BIG DATA
using Statistical Mechanical and Machine Learning techniques

> Create a new scheme of sublinear modeling for Big Data ™ -




Sublinear Time Inference using Loopy Belief Propagation for Markov Random Fields

Muneki Yasuda, Shun Kataoka and Kazuyuki
Tanaka: Statistical analysis of loopy belief
propagation in random fields,

Phys. Rev. E, Vol.92, pp.042120, 2015.

Numerical Experiments by Loopy
Belief Propagation

sample average
of qualities of outputs
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Approach from Quantum Computatlon to Big Data Analysis

Response

Digital computer

Quantum annealing machine is a special purpose device
for combinatorial optimization problems

High power saving performance

Short computational time is expected

Issues

* Is quantum annealing useful for real-world problems?

* What type of problems can be solved efficiently?

ﬁ How about problems in big data analysis

Quantum computeré

Approach
0.7 14 17 2
i ‘ : 1.9 7?7 06 1.2
nw . X=12 04 2 09
SR e ST ?7 00 04 7
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Community detectlon o _
Matrix interpolation

* Framework of quantum annealing is applied to
community detection and matrix interpolation

* Compare the performance of simulated quantum
annealing method (SQA) and the conventional
simulated annealing method (SA).

0.225 f{f*ifﬁfﬁfifiﬁ
Results 0200 1
SQA outperforms SA. 0175 "“
This indicates a positive ***° I =
proof that if we can use *'*| -/ £
D-Wave we may havea > ‘ o s
0.075 3 -
better result 0 25 50 75 100 125 150



Statistical-Mechanical Analysis of =
Compressed Sensing

for Hamiltonian Estimation

of Ising Spin Glass -
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Background and Contribution

Machines dedicated to solving combinatorial optimization problems by
utilizing quantum fluctuation (e.g. D-Wave 2000Q) have recently appeared

- The structure of the machines is sparse Ising Hamiltonian (sparse cost
function)

- The unknown parameters of the Ising Hamiltonian must be determined to
input problems into the machines - this is a nontrivial task!

- A general-purpose method that expgesses real-world problems as sparse
Ising Hamiltonian is needed 1

We propose the Hamiltonian estimation as the L;-norm minimization

and give the theoretical guarantee of the performance of the L;-norm
minimization



Problem Setting and Formulation

Ising Hamiltonian (cost function) energy value
1 1
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Theoretical Analysis of The Estimation

When does the L;-norm minimization gives “good” solutions?

good: low mean squared error (MSE) 1.0
~ 0.8

—

We analyze the behavior of the estimationz 0.6

<
via replica method [Mezard et al.,, 1987] = ¢4
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The performance evaluation of the estimation can be done in sublinear

time!
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Numerical Verification

We solve the L,-norm minimization quantitatively
via alternating direction methods of multipliers [Boyd et al., 2011]

MSE = |J — JO3
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Our theoretical analysis can be considered to be valid!




