

Advanced Core Technologies for Big Data Integration

Foundations of Innovative Algorithms for Big Data Naoki Katoh (Kwansei Gakuin Univ.)

DATAIA – JST INTERNATIONAL SYMPOSIUM ON DATA SCIENCE AND AI

July 11th, 2018

- For a huge size of big data, polynomial time algorithm paradigm becomes obsolete.
- So, we propose a new paradigm

Sublinear Time Paradigm

Run time	log n	√n	n	n log n	n²	n ³
Data size	Binary search		Linear search	Sorting	Shortest path	Max flow
n=1000	10	30	1000	1000	10 ⁶	10 ⁹
n=10 ⁶	20	1000	10 ⁶	2 × 10 ⁷	10 ¹²	10 ¹⁸ ≒317 years
n=10 ⁹ (# of Web servers)	30	30000	10 ⁹	3×10 ¹⁰ ≒300 Sec.	10 ¹⁸ ≒317 years	
n=10 ¹²	40	10 ⁶	10 ¹² =10000 Sec.	4 × 10 ¹³ ≒111 hours		
n=10 ¹⁵	50	3 × 10 ⁷	10 ¹⁵ 10 ⁷ Sec.≒110days	5 × 10 ¹⁶ ≒5500 days		
n=10 ¹⁸	60	10 ⁹ ≒10 Sec.	10 ¹⁰ Sec ≒317years.	6 × 10 ¹⁹ ≒ 19000 years	10 ⁸ calculatio	(※)Assurption

Project Overview

Foundations of Algorithm Theory for BIG DATA

- 1. Foundations of Sublinear Time Algorithm (Katoh group)
- 2. Foundations of Sublinear Data Structures (Shibuya group)
- **3. Foundations of Sublinear** Modeling (Tanaka group)

Team A: Sublinear Time Algorithm approach (Katoh group)

Major results of Team A (Katoh Group)

A1. Constant time algorithm for complex network

A2. Protein function analysis by combinatorial rigidity theory

Two paradigms in the big-data era: Constant-time and polynomial-time

Physics:

- Newtonian mechanics (17st --): necessary for normal physical calculation.
- Theory of relativity (20st--): necessary for the ultrahigh-speed situation.

Both are necessary

Computing:

• Polynomial-time algorithms (1950's --): necessary for normal computing.

Analogy

Constant-time algorithms (1990' --): necessary for the big-data era.

Both are necessary

Constant-time algorithms for complex networks: background and main result

Major Results of Team A

A1. Constant Algorithms for Complex Networks

A2. Protein function analysis by combinatorial rigidity theory

Protein Function Analysis by Combinatorial Rigidity Theory

Key difficulties in studying protein flexibility: Proteins motions occur on many time scales

Major Results

1. The Role of Dimer Asymmetry and Protomer Dynamics in Enzyme Catalysis (Science 2017)

2. Mechanistic insights into allosteric regulation of the A2A adenosine GPCR (G protein-coupled receptor) by physiological cations (Nature Communication 2018)

3. Repertoire Analysis of Antibody CDR-H3 Loops Suggests Affinity Maturation Does Not Typically Result in Rigidification (Frontiers in Immunology 2018) Allosteric communication in GPCRs by mechanical propagation in rigidity / transmission in DOF

How cells achieve signaling. A story of GPCRs

•Largest group of receptors, respond to drugs, hormones, neurotransmitters, ...

- Humans have over 800 GPCRs
- •Naturally allosteric but allosteric mechanism not well understood

<u>Novel application:</u> Cations (calcium, magnesium, sodium) are key allosteric modulators of GPCR signaling and likely play a role in serving as switches in the activation process

Positive allosteric modulation of $A_{2A}R$ by Mg^{2+} and Ca^{2+} cations

Mechanistic Insights into Allosteric Regulation of the A_{2A} Adenosine G-Protein-Coupled Receptor by Physiological Cations,

Ye, Sljoka, Tsuchimura, Prosser et al Nature Communication, 2018

Team D: Sublinear Data Structure Research from 3 Approaches

<u>Achievements</u>

- Deep Theories for Compression
 - Small memory compression methods (Sakamoto 2015, 2016, 2017, Kida 2016, 2017, 2018, Sadakane 2016, 2017)
- Big-Data Applications
 - Security data structure designed for massive data
 - Succinct ORAM (Oblivious Random Access Memory) (Onodera, Shibuya, STACS 2018)
 - IoT/Big-data Communication
 - Optimal-space fully-online grammar compression (Takabatake, I, Sakamoto, ESA 2017)
 - Real-time compression/decompression on FPGA for IoT communications (Yamagiwa, Marumo, Sakamoto, VLDB/BPOE 2016) Best Paper Award
 - Network Algorithms
 - Succinct Index for connectivity query on dynamic graphs (Nakamura, ISAAC 2017) Best Student Paper
 - Bioinformatics
 - Protein structure matching/indexing (Shibuya, 2015, 2016) IPSJ Yamashita Award
 - NGS data analysis (Sadakane, Shibuya, 2015)

Application to FPGA-based Low-Cost Communication

- Based on small-memory online self-index
 - High performance compression •
 - Small FPGA memory space
 - Online construction
 - Supports search and partial extraction

[Yamagiwa, Marumo, Sakamoto, VLDB/BPOE 2016, Best Paper Award]

- Hardware implementation
 - Very low cost FPGA
 - Small circuit size / 1CPU time compression

Succinct Oblivious RAM [Onodera, Shibuya STACS 2018]

• The first ORAM with $o(\sqrt{n})$ access time and sublinear storage overhead

RAM M

- Practical performance
 - Needs only 1/100 1/4 of the path ORAM/Ring ORAM storage overhead

Team M: Sublinear Modeling from Statistical Mechanics

- Coarse graining of Information based on statistical mechanics and machine learning
- Developing efficient approximate algorithms by combining algorithm theory and statistical mechanics

→ Create a new scheme of sublinear modeling for Big Data

Approach from Quantum Computation to Big Data Analysis

Digital computer

Quantum computer

- Quantum annealing machine is a special purpose device for combinatorial optimization problems
- High power saving performance
- Short computational time is expected

Issues

- Is quantum annealing useful for real-world problems?
- What type of problems can be solved efficiently?

Approach

- Framework of quantum annealing is applied to community detection and matrix interpolation
- Compare the performance of simulated quantum annealing method (SQA) and the conventional simulated annealing method (SA).

Results

SQA outperforms SA.0.1This indicates a positive0.1proof that if we can use0.1D-Wave we may have a0.1better result0.0

Statistical-Mechanical Analysis of Compressed Sensing for Hamiltonian Estimation of Ising Spin Glass

Chako Takahashi*, Masayuki Ohzeki*, Shuntaro Okada*[†], Masayoshi Terabe[†], Shinichiro Taguchi[†], Kazuyuki Tanaka*

* Graduate School of Information Sciences, Tohoku University
 † DENSO CORPORATION

Background and Contribution

Machines dedicated to solving combinatorial optimization problems by utilizing quantum fluctuation (e.g. D-Wave 2000Q) have recently appeared

- The structure of the machines is sparse Ising Hamiltonian (sparse cost function)

- The unknown parameters of the Ising Hamiltonian must be determined to input problems into the machines – this is a nontrivial task!

- A general-purpose method that expresses real-world problems as sparse Ising Hamiltonian is needed

We propose the Hamiltonian estimation as the L_1 -norm minimization and give the theoretical guarantee of the performance of the L_1 -norm minimization

Problem Setting and Formulation

Ising Hamiltonian (cost function) energy value $H(\boldsymbol{\sigma}) = -\frac{1}{N} \sum_{i,j} J_{ij} \sigma_i \sigma_j, \ \sigma_i \in \{-1, +1\} \qquad \boldsymbol{E} = -\frac{1}{N} S \boldsymbol{J}^0$ **observed data** $\boldsymbol{E} = \left(E^{(1)}, E^{(2)}, \cdots, E^{(M)}\right)^{\mathrm{T}} \qquad S = \begin{pmatrix} \sigma_{1}^{(1)}\sigma_{2}^{(1)} & \cdots & \sigma_{1}^{(1)}\sigma_{N}^{(1)} & \sigma_{2}^{(1)}\sigma_{3}^{(1)} & \cdots & \sigma_{N-1}^{(1)}\sigma_{N}^{(1)} \\ \sigma_{1}^{(2)}\sigma_{2}^{(2)} & \cdots & \sigma_{1}^{(2)}\sigma_{N}^{(2)} & \sigma_{2}^{(2)}\sigma_{3}^{(2)} & \cdots & \sigma_{N-1}^{(2)}\sigma_{N}^{(2)} \\ \vdots & \cdots & \vdots & \vdots & \cdots & \vdots \\ \sigma_{1}^{(M)}\sigma_{2}^{(M)} & \cdots & \sigma_{1}^{(M)}\sigma_{N}^{(M)} & \sigma_{2}^{(M)}\sigma_{3}^{(M)} & \cdots & \sigma_{N-1}^{(M)}\sigma_{N}^{(M)} \end{pmatrix}$ $oldsymbol{J}^{0}=\left(J_{12}^{0},\cdots,J_{1N}^{0},J_{23}^{0},\cdots,J_{N-1,N}^{0}
ight)^{\mathrm{T}}$ true coupling constants $P(J_{ij}^{0}) = (1 - \rho) \,\delta(J_{ij}^{0}) + \rho \,\mathcal{N}(0, 1)$ (unknown) Hamiltonian estimation $\min_{\boldsymbol{J}} \|\boldsymbol{J}\|_1 \text{ subject to } \boldsymbol{E} = \left(-\frac{1}{N}S\boldsymbol{J}^0\right) = -\frac{1}{N}S\boldsymbol{J}$

Theoretical Analysis of The Estimation

When does the L_1 -norm minimization gives "good" solutions? good: low mean squared error (MSE) 1.0

We analyze the behavior of the estimation $\begin{bmatrix} 0.6 \\ 0.4 \end{bmatrix}$ via replica method [Mezard et al., 1987] $\begin{bmatrix} 0.4 \\ 0.4 \end{bmatrix}$ $[MSE]_{S,J^0} = \frac{2}{N(N-1)} \left[\langle \|J - J^0\|_2^2 \rangle_{J|E}^{\beta \to \infty} \right]_{S,J^0} = 0.2$

 $= \rho - 2m + Q$

The performance evaluation of the estimation can be done in sublinear

time!

Numerical Verification

We solve the L_1 -norm minimization **quantitatively** via alternating direction methods of multipliers [Boyd et al., 2011]

Our theoretical analysis can be considered to be valid!