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Life-span is becoming longer in all countries.
Can we enjoy delicious meals for long-life, e.g. 100 years old?




Four types of global crop yield trends

Yield trends are different for crops, cultivars, climates, management methods etc.
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Recent patterns of crop yield growth and stagnation
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If smart agriculture can improve food production system dramatically,
we will be able to live long peacefully without hard-works.
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AgriBigData can accelerate advance of smart agriculture
by producing knowledge and its apps.

Knowledge & Apps

§ Open Data )

For farming
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One of the bottle-necks of smart agriculture is
data collection in real fields.
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Observation by Sensor networks (Field Server)
manually measured data vl e

Especially time-series data collection is difficult in large scale fields.



Get numerical data from Images

Collect Data in Fields

Field Sensor Network

Swarm of Drones

New Sensing Methods
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Developing data collection methods with sensor networks and
easy/affordable deployment technologies in real fields

The shorter node is the
better for spraying, but
electro-magnetic field is
shielded by plant canopy.
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send data through the
canopy.
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Edge computing



DATA-FARM: Reinvention of the experimental farm

Designed to collect ground truth data easily and to harvest sufficient energy
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Collected Environment Time-series Data:
Soil moisture, Soil temperature, CO, concentration, etc.
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Developing practical observation methods by drones
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Formation flight control methods Safety drone by 3D printing

Plant’s 3D data can be measured precisely by formation flight against drones’ downwash
and natural winds.



Developing robust segmentation methods against
complex background and diverse lighting

Numerical data (growth rates of parents and F1)
extracted by HyperRecognizer (extended EasyPCC)



Plant phenotyping in fields
for soybeans and sugar beets
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Numerical data (tree’s phenotypes) is extracted by
HyperRecognizer using time-series images
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Breeder Friendly Field Phenotyping System
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Found new index, 3D score, to predict yield
100 days Canopy Coverage integration (CC. int.)
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Discovered Knowledge:
Heterosis appeared on early stage was measured quantitatively by 3D score as phenotype.



Another Yield-Prediction-Method (4D score) was discovered.

Root weight (t/10a)

3D Growth Value

NK195xNK291 @

|

W T O o
<O il @
r—y Y0 a0
o ©poy" 09 @ o
° Q@ of (o} e
2% 0o ® .
e O @ ¢ " o
o [ 1 9 o © @0
o | —] C 0

v *&
.| 4D /score Nk235BRxNK248BR
A Integrated Value
: 0~120 day
s b ) |
0 20 40 Days 100
20 40 60 80 100 120

4D _score:Integrated value of Canopy Height (0 ~ 120 days)



Conclusions and Discussions

. We proposed a concept of agricultural big data
(AgriBigData) which Is created by drones and sensor
networks to discover knowledge.

. Software tools and new methods have been developed to
construct AgriBigData.

. We discovered phenotyping index (3D/4D scores) to
measure Heterosis quantitively. 3D/4D scores are also
useful to predict yield.

. Collaboration with INRA, ISU, etc. has been very useful.



