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Opportunities



Two Potential Categories of
Applications

Urban-scale Social Cyber-Physical Systems for Secure,
Sustainable, and Better Social Life

— Optimizing social services such as

* transportation / water supply and sewerage system / energy supply
and consumption / traffic accident prevention / snow removal / ...

— Disaster management (preparedness, mitigation, response, and
recovery)

— Terror prevention
Data-driven Sciences: Paradigm Shift from “X” Science to
“X” Informatics for varieties of “X”

— X: bio / biomedical / chemical / geo / brain / cosmological /
meteorological / pharmaceutical / epidemiological / materials /

Cf. NSF’s focused 2 areas for big data applications
* Smart and connected communities
* Harnessing data for 215t Century Science and Engineering



Urban-scale Social Cyber-Physical
Systems with Humans in the Loop

Real-time monitoring and control of the situation through loT

— weather, traffic & mobility, road condition, people’s behaviors, energy
consumption, CO,, precipitation, earthquake, tsunami, epidemic, ...

Real-time assessment of the situation
— Quantitative assessment

loT monitoring

— Geo-Visualization of states, events, — 5\)’::;

and flows Physical | (Analysis
— |dentification of their anomalies World contro and

P : : : Decision

Prediction of the future situation
T . . Making)

— Data assimilation of simulation and

observation
— Machine learning
Decision Making and Action to the Physical World
— Based on real-rime assessment and/or prediction



Data-driven Sciences

* Forerunners

. . Bio-Bank,
— Bio Informatics High Throughput Experiment,
— Biomedical Informatics 3P Print

monitoring

 Followers

— Materials Informatics [ Physical
World

* (End-to-End) In-Silico-
Science:

— No physical transfer of
mass - Open Science
— Citizen Science

End-to-End In-Silico Science



JST CREST programs on Big Data

2013-2020
Each winning project: 5.5 years
CREST Program on Big Data Applications

— PO: Yuzuru Tanaka (Hokkaido Univ.)

— Collaboration between CS and/or Math researchers and domain
science researchers is mandatory.

— For either creating a new societal and/or economic value or
discovering new scientific knowledge

CREST Program on Big Data Core-Technologies

— PO: Prof. Masaru Kitsuregawa (NIl)



Design Policy of CREST Program on
“Big Data Applications”

Desighing a good portfolio to cover
challenging big data applications.

Choosing a flagship project from each area.

Promoting cross-disciplinary synergy,
especially among young researchers.
Clarifying the fundamental common

denominator technologies, and integrate
them into an open science platform.



Portfolio of Domain Sciences

and Flagship Projects

2 Projects awarded in 2013
Pharmacy: Drug Discovery

* Development of a knowledge-generating
platform driven by big data in drug
discovery through production processes.
— PI: Kimito Funatsu(Professor, The University of

Tokvo)

+ Establishing the most advanced disaster

» Innovating “Big Data Assimilation”
technology for revolutionizing very-
short-range severe weather prediction
— PI: Takemasa Miyoshi(Team Leader, RIKEN)

Meteorology: 30 min ahead
Forecasting of Localized Severe Rain

4 Projects awarded in 2014 (1)

reduction management system by fusion
of real-time disaster simulation and big
data assimilation

— PI: Shunichi Koshimura(Professor, International
Research Institute of Disaster Science, Tohoku

Tsunami
Disaster
Prevention
and
Mitigation

4 Pronecis_amar_d_ed_m_mm (2)
Epidemiology: pandemic forecast|n

* Detecting premonitory signs and real-
time forecasting of pandemic using big
biological data
— Pl Hiroshi Nishiura(Professor, Graduate School

of Medicine, Hokkaido University)

T ° Statistical computational cosmology
with Big Astronomical Imaging Data

— PI: Naoki Yoshida(Professor, Department of
Physics / Kavli IPMU, The University of Tokyo)

Cosmology: Discovery of new
Super Novae and 3D Mapmaklng
of the Dark Matter Distribution

unwm%\
'éﬁ'd rlsk predictlon of diseases based on
big-data analysis of clinical and whole
omics data in medicine

Persorratizedy-

Precision

& Medicine

Research Institute, Tokyo Medical and Dental
University)

3 Projects awarded in 2015

¢ Data-driven analysis of the

mechanism of animal development

— PI: Shuichi Onami{Team Leader, Quantitative
Biclogy Center, RIKEN)

b Knowledge Discovery by

Constructing AgriBigData

— Pl: Masayuki Hirafuji{Project Professor, Graduate
School of Agricultural and Life Sciences, The
University of Tokyo)

t Knowledge Discovery through

Structural Document Understanding

— Pl Yuji Matsumoto(Professor, Graduate School
of Information Science, Nara Institute of Science
and Technology)

Developmental
Biology:

Automatic

Digitization of
Development

Processes
e-Agriculture:

Phenotyping

Literature-based
Knowledge
Discovery




Fundamental Common Denominator
Technologies

Varieties of Data Science Algorithms: applicability and restrictions

Literature-based knowledge discovery: from big data to big
mechanism

Data assimilation of real-time observation and physical-model
based ensemble simulation for the high-precision real-time
prediction of the near future

— Continuous system modeling (well studied) / discrete system modeling
(not well studied yet)

Exploratory visual analytics to cope with the heterogenous nature
of available training data sets.

— Interactive segmentation of heterogenous data to sets of homogeneous
data, and analysis of each of them

— Definition, management, and execution of such analysis process scenarios.
Integration Platform: Cyber Research Infrastructure
— Hands-on portals for 9 projects

Ontology-based management of resources, analysis scenarios, users,
and projects.
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Advisory Board

International Advisors

Costantino Thanos
DB, Cyber Research
Infrastructure

Norbert Graf

Personalized Medicine

Research Director, Institute of
Information Science and
Technologies

Professor, Director,

Saarland University Hospital

[

Nicolas Spyratos
DB, Big Data Analytics

of Paris Sud 11

Professor Emeritus, Universitv] ’

Nigel Waters
GIS

Randolph Goebel
ML, Visual Analytics

Professor Emeritus, University
of Calgary
Professor, University of Alberta

Hajime Amano
Ryosuke Shibasaki

Masafumi Shimoda
Ryosuke Suzuki
Koichi Takeda

Yasumasa Nishiura

Tomoko Matsui
Satoru Miyano

Local Advisors

President, ITS Japan

Professor, Center for Spatial Information Science &
Institute of Industrial Science, The University of Tokyo
Business Strategy Advisor, DNA Chip Research Inc.
Consultant, Nomura Research Institute, Ltd.
Professor, Graduate School of Informatics /

Director, Future Value Creation Research Center
Nagoya University

Professor, WPI Advanced Institute for Materials
Research, Tohoku University

Professor, The Institute of Statistical Mathematics
Professor, Human Genome Center, Institute of Medical
Science, The University of Tokyo



Symposiums on Big Data Applications

e September Symposium (1day)

— 2 keynote speakers
* Michele Sebag in 2017
e Christos H. Papadimitriou in 2018

— progress report by each of 9 Pls
e January Symposium (2 days)
— 1 keynote speaker
* Dennis Tsichritzis in 2015
* Christos Faloutsos in 2018
e Stuart Kaffman in 20197
— Each project session

* 1invited speaker
* Progress report by Pl and members

* + Joint Symposium with CREST Program on Big Data Core
Technologies (NSF-JST, DATAIA-JST)
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My Involvement
in Big Data projects (1)

» Biomedical Science: Personalized Medicine for cancer

— EU FP projects for integrated IT support of clinical trials on cancer

» FPG6 Integrated Project ACGT (Advancing Clinico-Genomic Trials on Cancer)
(02/2006 — 07/2010): 26 teams

« FP7 Large-scale Integration Project p-medicine (personalized medicine)
(02/2011 — 01/2015 ): 29 teams

Trial Outline Builder (TOB) (2010)

(Web-top integrated environment for planning trials, patient

TOB for analyzing the Effect of
Pre- op Chemotherapy

data acquisition, and exploratorv daia analy3|s)

= Trial Plan Editing

~ Copy-and-paste of trial event
types to design both a trial flow
graph and a set of some additional
events outside the flow.

— Aclick of each event opens its
CRF editor

+ Patient Treatment View : CRF input
for each patient through the TOB

— Possibly with the specification of |

some additional outside-of-flow
events
* Query & Analysis View: Querying
the DB
— for specific cases for their
statistical analysis or the
visualization of correlations among
specified items  cripaz0152x2 108208
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Each found pattern may work as a new biomarker to identify those patients
who are helped or not helped by the preop chemotherapy
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Exploratory ViSuaI Analytics



+ Population:
« Annual snowfall:

= Annual budget for snow plowing

= Total distance of snow plowing

My Involvement
in Big Data projects (2)

Social Science: Urban-scale Monitoring and Service Optimization
— MEXT initiative project on Social CPS (Cyber-Physical System) for
Efficient Social Services (09/2012-03/2017)

» Project Consortium (NIl (National Institute of Informatics), Hokkaido Univ.,
Osaka Univ., Kyushu Univ.)

 Hokkaido team focuses on smart snow removal.
Snow Removal in Sapporo as a Large- Geospatial DIQItEl' Dashboard for
scale Complex Social Service

Exploratory Visual Analytics (2013)

1,920,739

597cm

— The largest annual snowfall among
the cities with more than 1M people [
in the world

e k-

and removing (2010):
4,729,000,000 yen
(147,000,000 $)
2" |ast season:

22,000,000,000 yen

(220,000,000 §)

and removin

during a single
night:

'328km foo v
.

L)
4 11 W2 000TIF - B

* Exploratory Visual Analytics
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Material Science: Collaboration with Dr. Keisuke Takahashi at NIMS

(National Institute for Materials Science) (2014- )

J




Materials Informatics

* Current status: emerging period

— Computational (and/or experimental) materials
science with the help of ML-based data analysis

* 2 major objectives:
(1) To replace DFT computation with ML for speed-up

(2) To optimally guide the exploration of the target
space to decide which material to choose next for
DFT computation or experiment

» Main targets: natural materials with modifications



ML for Speed-Up

Explanatory Objective
variables variables
y11 y21 °*) ym
training Toarn N
data set
F s.t. y=F(x
DB or y=Fix) /)
simulation Compute
Estimation by
Machine Learning
F(u)

Replacing (n+m) variable simulations with n
variable simulations and ML



What ML to learn?
3 Maj()r GOaIS

(- Materials Discovery: U= -7 3
Find the material with maximum performance m—TETT T
— DFT to compute F : Structure — Performance
— ML (regression) to learn F as an explicit function|
\ Inverse Problem: arg max F(x)

Materials informatics can generate “forward models” for predictive nalytics
e.¢. Property = fProcessing, Composition, Structure)

experiments: years
simulations: hours, day
machine learning: secofids
 Measurement Analysis: (for candidates discovery)

|dentify the material structure from its measurement result
— (Measurement Data) + Simulation Data: F*: Structure — Property

— ML (Deep Learning) to learn F*'as a computation mechanism
» F*should be bijective, otherwise Deep Learning does not converge.

— Evaluate F*' for a given measurement chart or image to identify its
structure.
« Literature-based Knowledge Discovery

— Network of conditional or unconditional causality relations as a directed
graph or a catalytic reaction network




High Speed Estimation of Lattice Constants

THE JOURNAL OF CHEMICAL PHYSICS 146, 204104 (2017)

Descriptors for predicting the lattice constant of body centered
cubic crystal
Keisuke Takahashi,?2 Lauren Takahashi,?® Jakub D. Baran,* and Yuzuru Tanaka'

'Center for Materials research by Information Integration ( cMP ), Research and Services Division of Materials
Data and Integrated System (MaDIS), National Institute for Materials Science (NIMS), 1-2-1 Sengen, Tsukuba,
Ibaraki 305-0047, Japan
*Graduate School of Engineering, Hokkaido University, N-13, W-8, Sapporo 060-8628, Japan
3 Freelance Researcher, Central Ward, Sapporo 064, Japan
‘Department of Chemistry, University of Bath, Claverton Down, Bath BA2 7AY, United Kingdom

(Received 24 February 2017; accepted 11 May 2017; published online 24 May 2017)

—

First Principle
Calculations

A: Ag, Al, As, Au, Co, Cr, Cu, Fe, Ga, Li, Mg,
Ma, Ni, Os, Pd, P1, Rh, Ru, Si, Ti, V, W, Zn

B: Atomic numbers 1-42, 44-57, 72-83.

Big Data

¥

Lattice
. Constant

1

Material [Predicted | Calculated |Error | Experiment Error
FeAl 2.92 2.90 0.7% | 2.91[15] 0.3%
FeTi 3.08 2.96 3.9% | 2.98 [16] 3.3%
CoTi 3.07 2.99 2.6% | 3.00[17] 2.3%
MgAg 3.41 3:38 1.5% | 3.31[18] 2.9%
ScAl 3.47 3.37 29% | 3.39[19] 2.3%

Dataset

|

Trained SVR

d Machine Learning

Every possible
combination of the
descriptor vanables

Support Vector Regression
Cross Validation
Descriptors Search

Exp:

months or years

Comp.: hours

ML:

seconds




To find good descriptors

PHYSICAL REVIEW B 95, 054110 (2017)

Unveiling descriptors for predicting the bulk modulus of amorphous carbon

Keisuke Takahashi’
Center for Materials Research by Information Integration (CMI?), National Institute for Materials Science,
1-2-1 Sengen, Tsukuba, Ibaraki 305-0047, Japan
and Graduate School of Engineering, Hokkaido University, N-13, W-8, Sapporo 060-8628, Japan

Yuzuru Tanaka
Meme Media Laboratory, Hokkaido University, N-13, W-8, Sapporo 060-8628, Japan
(Received 5 August 2016; published 14 February 2017)
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Predicted bulk modulus against true bulk modulus with descriptors:
(a) the number of bonds in each C atom and (b) the number of bonds in each C atom
with density. Structure models of bond type in amorphous carbon are also shown.



2D Magnets
(Journal of Physics: Condensed Matter)

_ 216 2D Materials Data + ML (4 discriptors)

rediction 254 2D Materials with High Magnetic Moment

‘ Checking by DFT

8 undiscovered stable 2D materials with high
magnetic moments

Miyasato Tanaka Takahashi

D e - "‘Kc‘ oS desn P
— * . Re Pt 3 a6 3]
g I e PR Mgy o “'m ¢ Graphene based
> 4 g{,&\f 0 - #iRu2 @intg }:;i‘;:‘ . M082 based
L #xhe Mucie SlaPt
T éoTa2 L é o
o 3 Ryt $uHR g ‘
Q % e SR L vy Vo ¢
= o "xﬁn« Y e e BNy Tm J é Lo
3 = e I . cFe
< 2 ﬂmhlie: e ..':‘l:"" s Pt L W}:‘:}: : o :.:u.vn SO 3 P ¢
g m-““iﬁﬁgu o P2 %;" P
s , .
te 1 % e SaRl Sl p
B é 450 e
(ﬁ &“ol':! ¢
: SR 'S
"-T—* . O 0 'ﬁ MiTe2 & ‘;‘;e
The structural models of AB2 b= e .
. . . — l i ¢ @use
in top (a) and side (b) view u g $
T &
JiRe2 &u: s
[

and graphene based AB in _2046

top (¢) and side (d) view 0.5 1.0 1.5 20 25 3.0 35

Average magnetic moment (1)



Searching for hidden perovskite materials

(ACS Photonics: Keisuke Takahashi, Lauren Takahashi, Itsuki
Miyazato, and Yuzuru Tanaka)

To find perovskite materials within the ideal band gap and formation energy ranges for
solar cell applications

15,000 perovskite materials data for ML (random forest) to predict the band gap
18 physical descriptors are revealed to determine the band gap.
9,328 perovskite materials with potential for applications in solar cell materials are

predicted.

The selected Li and Na based perovskite materials within predicted 9,328 are

evaluated with DFT.

11 undiscovered Li(Na) based perovskite materials are found.

Formation Energy (eV)

Atomic model of perovskite materials,
ABC2(C1,C2)D. Atomic color code; Blue:A,
Green:B, Yellow: C, Red:D.
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Emerging MI: Progressive Exploratory
Search: Bayesian Optimization

To find the mater
maximum perforr

Gaussian Process
Regression with 3

sample points

3 sample points

PI(x)

al with

current

maximum

o p(xy) Ea{xz)

P(f(x) > f(x"))
p(x) — f(xt) _

x;. 73 X: search space
Next point to sample
for maximizing the expected improvement

Pl(x), i.e., size of the green area
— guiding experiment or DFT computation



Bayesian Optimization

* No guarantee that the physics follows the
Gaussian distribution assumption.

« Exploration may somehow finally reaches to a
local maximal, not a global maximum.

* Question:
— Can this method find Nd,Fe,,B, starting from SmCo?
— Probably not, since they follow different physics.

— How about Sm,(Co, FE, Cu, Zr),,, starting from
SmCo;?
- 7?



How to find a needle in a
haystack?

Current Focus of

An experimentally its neighborhood as  Computational and/or
In the ?J?\zz\é?\gdmceﬁzrr?apllon an exploration space Experimental
neighbor materials Scientists
of a found > e — discovery of desired
one > S _
materials

Simulation / experiment data
data set as a learning set to expand an exploration
data set space through ML

Brute \ discovery of desired

<~ i
force materials
exhaustive

filtering 7

Simulation / experiment




Challenges



3 Things to Consider

@ (3) ML Algorithm

y]_l yz; s p ym
o

-1
Estimation by (1) Tralnlng
Machine Learning data set

(2) Set of descriptors




(1) Training Data Set

Heterogeneous (also observed in urban-scale
traffic in different road links, and in chemo- M
1 5
response of patients and tumors)
— Different groups follow different mathematical
models.
— Appropriate segmentations are required before
analysis!
* Size of each homogeneous data set
— Inorganic materials: 103~104

— Difficult to provide more than 10° data
* No more variations of structures and components

e Both DFT computations and experiments are time-
consuming

How to increase the size of the homogeneous training
data set? Is it really necessary?



Once segmented to homogeneous

systems, each follows a math model.

* SVR works well to find a hidden physical order which
follows a math model.

— Different from data sets in other research areas

500

450+

400

350+t

SVR Predicted Bulk Modulus (GPa)

#E I ERFEROE

30 : ‘ ]
gOO 350 400 450 500 00%00  o00s 0.10 0.15 0.20 0.25 0.30 035
True Bulk Modulus (GPa) ABSYE B 0D BE 2 (A 2 0D 8 4t F2 B T35 8

ML is to find out a hidden physical order whose mathematical
model is not known yet, and to give its approximate function.



(2) Set of Descriptors

* No systematic way to define an arbitrarily large set of
descriptors

— cf. Genome systematically provides genes, their expressions,
and gene alterations as descriptors.

 Alarge training data set requires a large set of
descriptors,

* while a small training data set needs to use only a small
set of good descriptors to avoid the curse of dimensions.

How to systematically define a large set of descriptors?

How to define a small set of good descriptors for a small
set of training data to avoid the curse of dimensions?
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Big Data vs. Small Data

after segmented into homogeneous data sets

104

Curse of
Dimension Big Data

103

Medium Big Data

-
o
N

Medium Small Data

101

Poor
Description
Small Data Power

102 103 104 10° 106 107 108 109
Training Data
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104

103

-
o
N

101

(3) ML Algorithm

Curse of
Dimension

Big Data
(Deep Learning)

Medium Big Data

(Regression + Boosting /
Neural Network)

Medium Small Data
(Regression)
Small Data

(Regression)
Current Inorganic
M

102 103 104 10° 10°
Training Data

Poor
Description
Power

107 108 10°
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Potential Ml Scenarios to Come

104

Curse of

Dimension Big Data

- (Deep Learning)

Medium Big De
(Regression + Boosting /
Neural Network)

-
o
N

\/ledil1m MmAall )3

(Regression)
Poor

Small Data Description
(Regression) Power

101

102 103 104 10° 106 107 108 109
Training Data




102
[ ] [ ] Curse of
Dimension

10%
=]
@
S ta
%
8 102 Neural Network’
@

Medium Small Data
Regression;
g —
Si

* Big Data, or Small Data?
— Organic materials may result in big data (= 10°)
— Inorganic materials result in small data (< 10*~10°)

 Some people try to increase the data size.

— combinatorial design
— organometallic materials whose skeletal polymers
increase the variety.
e Systematic Definition of Descriptors

— some researchers focus on organometallic materials.

 The SMILE representations of their skeletal polymers enable
them to systematically define descriptors.



dium Big Data
+

Medium Small Data g2

Power

* Target: —
— 103-10* homogeneous simulation data and/or HTE data
— Less than 10' governing well-designed descriptors

— Heterogeneous data consisting of those homogeneous
ones.

e Method:

— First, segmentation
* What kind? - (new segmentation algorithm based on item-set mining)

— Then, regression

* SVR-based machine learning to reveal hidden orders as math
functions

 Numerical solution to inverse problems

o 107 108 100

107 10°%



Medium Small Data:
Design Parameters as Descriptors

« Designers class of materials
— Atrtificially designed materials
— No more than 10 design parameters
— Data can be acquired through HTE or HTC
— # of materials in the class >103
— Simultaneous materials discovery for varieties of functions

« Design framework: combinatorial design
— Multilayered 2D materials
— scaffolding + modifiers

« Scaffolding: functional / nonfunctional

« modifiers to give functions
 Different scaffoldings define different classes.



(Scaffolding + Modifiers) Framework:
Candidates of Scaffolding (1)

 Carbon-based ones:

fullerene nanotube graphene

« 2D materials + layered structures
— Intralayer modifier
— Interlayer modifier

* Polymer nanocomposites/nanoparticle

Polymeric Nanoparticles

Emulsion groplet ~ Nanocapsule Nanosphere

* DI'LIQ t.L"'L.L'F—"{;||‘_\|rrr|t:3r /D Surfactant



Scaffolding + Modifiers) Framework:
Candidates of Scaffolding (2)

Nano pores

Microporous Mesoporous Macroporous
Less than 2 nm 2-50 nm Greater than 50 nm
(Zeolites) (Mesoporous silicates) (Ceramics)

Crystal surface




Scaffolding + Modifiers) Framework
(1) Modifiers

* Single atom
* Atom cluster




Special focuses on red ones

e Others:

— DFT computation becomes difficult.
— No translational symmetry

* Biggest interest on

— Double layered 2D Materials with metallic atoms or
clusters as interlayer modifiers
» For ML-based analysis, the scaffolding 2D material is fixed.

— Nano particles
» Design parameters can be well defined



Single atom between graphene layers

_,/-—--r***4~f*‘4**f~Af*»———————————————————————-777—:_;,:_-\

_________________________________________________

Pl

E] 4 5 & 7 B S5Q1W " 12 13 4 1% e 17 18

[ ]

He

HHE B
c F || MNe
195F‘I

EEEIEEE]
| R R ER Van der Waals force
EEHEII@IIIII-I
HHHIEIIIIIEHIHE
(5 ) ] ) o i ] e o] ] Properties of single atoms

,ﬁE.IEI.E.é.HEﬂ are well preserved

=

EEEEEE
EEEEEE
x|l

£

~ & owA S T

ﬁl@ﬁ




sJ10)duosa

104

103

-
o
N

—
=
|

Landscape of
Materials Informatics

Curse of

16014 I

Dimension

we

e.g. Programmable DNA-based

Big Data

Synthetic Materials?

T Q
R Medium Big Data
CBD = Organometallic Materials
a B
@ Medium Small Data
Q Artificially Designed
= Inorganic-Materials
of
2}

Small Data
Metal Crystal

A

102 103 10% 10° 106
Learning Data

Poor
Description
Power

107 108 10°



Take Home Messages

How to deal with the heterogeneity of data in practice?
— Exploratory visual analytics
— From description to design

Implications both from the nature of inorganic materials
and from ML

Target: Designers classes of materials
— 103-10* DFT data and/or HTE data
— <10 governing well-designed descriptors

Method: Segmentation — Regression

Open Question

— What kinds of designers classes of materials can effectively
exploit both DFT and ML for the exhaustive filtering of its whole
search space?



