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Deep Learning At TAU Image Classification

(simple) Image Classification G. Charpiat

I Dataset of skin pictures, from a hospital

I Classes: operate / don’t operate

I Difficulties: small part of the image, detection, white balance...

I Methodology:
I download pre-trained network and train with own dataset
I OR build a 5+2-convolutional network and train – using standard libraries
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Deep Population Genetics G. Charpiat & F. Jay

Reconstruct demographic history from today ADN sequences
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Demographic History Traces

Tightening Interbreeding
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The architecture

Calibration of a given model
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Deep Learning At TAU Power Grid Optimisation

The French Power Grid B. Donnot, A. Marot (RTE), I. Guyon

Context

I Find curative actions on/off switches

I to prevent “n-1” security loss

Network

I 7000 consumers, 3000 producers including 300 renewable

I 10 000 electric lines, 30 000 topology switches

I 5mn time steps
I A physical simulator

I expensive .5s per simulation → 1 CPU day per week

I fragile 30% failures → find better initialization

Historical Data

I 10 years record, ∼ 400 000 manoeuvres per years, but

I many possible causes, < 20% curative actions no way to tell
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Deep Learning @ work

An ML/Optimization hybrid problem
I Learn to distinguish curative from maintainance actions

simulating ”what-if” scenarii

I with greedy “n-1” constraint to be checked at all steps

I −→ Deep surrogate of the simulator

Deep residual network

But how to include the topology?
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One hot encoding one boolean input per line

Guided dropout each missing line ’kills’ some connections → additive adaptivity
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Results on Artificial Data

118 nodes, 99 consumptions, 54 productions, 186 power lines
15000 simulated injections, 1-defect learning

One-hot encoding vs Guided dropout

1-defect generalization 2-defects generalization
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Results on Real Data

368 nodes, 246 consumptions, 122 productions, 387 power lines
Real data from 2012 to May 2017 for training,
and from June and July 2017 for test, 1-defect learning

One-hot encoding vs Guided dropout

1-defect generalization 2-defects generalization
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Deep Learning At TAU Combating Unemployment

Combating Unemployment with Big Data
Coll. Qapa

Combating Unemployment

I How to deal with Market friction?
unfilled job offers and unemployed people

I A collaborative filtering problem

Goal Matching job offers and CVs
From descriptions + history of interactions

How Extending Collaborative Filtering
(recommending job seekers to recruiters)

The MAJORE project (MAtching JObs and REsumes)



Deep Learning At TAU Combating Unemployment

A Collaborative Filtering problem

The Qapa Data

2012-2016

I 2 millions of jobs offers

I 1.5 millions of CVs

I 13 millions of interactions

2 months period

I 11,000 recruiters (users)

I 7,000 CVs (items)

I 80,000 interactions

The Cold Start problem

I Recommend new offers (jobs)

I Using jobs (offers)similarities

I direct approaches fail (tf-idf or LSA)
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Representation of CVs and Job Offers

Offers (circle) and CVs (star)

Rows/col of M → SVD(500) → t-SNE Bags of words → LSA(500) → t-SNE

Seekers/recruiters understand each other (left);
but they don’t speak the same language (right)
−→ DNNs to learn an ad hoc representation
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Learning a Representation

Siamese Networks

yj

θ

φ(yj)

yk

θ

φ(yk)

Lθ(yj , yk)

with loss Lθ(yj , yk) =1{sim∗(j ,k)=1}‖Φθ(yj)− Φθ(yk)‖2
2

+ 1{sim∗(j ,k)=0} (m − ‖Φθ(yj)− Φθ(yk)‖2)2
+

where sim∗(j , k) =

{
1 if 〈M·,j ,M·,k〉 > 0
0 otherwise
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Seeded Influencer Identification
Ph. Caillou & M. Sebag, coll SME Augure

Goal

I Find the influencers in a given social network

I from public data sources tweets, blogs, articles, . . .

I Commercial goal: so as to bribe them :-)

I Scientific goal: with little user input

What is an Influencer?

I Highly retweeted? but # retweets disagrees with # followers

I Sources of information cascades?

I # invitations to join?

I Topic-specific PageRanking?

I Presence on Wikipedia?
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Seeded Influencer Ranking

Input

I A social network

I (Big) Data of user interactions Tweets, blogs, messages, . . .

I Some identified influencers

The global picture

I Derive features representing the users using content and traces

I Optimize scoring function giving highest scores to known influencers

I return best-k scoring users the most (known + new) influencers
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Data

Sources

I random 10% of all retweets of November 2014

I 100M tweets, 45M unique tweets,

I with origin-destination pairs

I 43M nodes graph

I only words in at least 0.001% and at most 10% tweets considered

I leaving 10.5M candidates
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Features

100 Content-based Features foreach medium eventually

I Foreach user x, identify W(x), the N words with max tf-idf
term frequency - inverse document frequency

I 50 words that appear most often in all W(influencer)

I 50 words with max sum of tf-idf over
⋃W(influencer)

I each selected word is a feature for x : 0 if not present in W(x), ti-idf
otherwise Many are null for most candidates

6 Network Features

I from the weighted graph of retweets centrality, PageRank, . . .

5 Social Features

I from tweeter user profiles # tweets, # followers, . . .
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Better than Basic Social Features
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Transfer to Augure Company

. . . in the blog Le monde informatique . . .
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Causality
D.Kalainathan, O.Goudet, P.Caillou, M.Sebag, P.Tubaro, I.Guyon

Quality of life at work and firm performance: A controversial issue
I quality of life at work ! a mean of enhancing productivity and competitiveness

La fabrique de l’industrie, Bourdu, E. et al., 2016

I Literature review and analytical study of relationship between social and financial
performance Allouche et Laroche, 2005

Off-the-shelf Data Analysis
I 408 firms

I 222 “social” variables grouped into 8 domains: Employment structure,
Employment dynamic, Job security, Renumeration levels, Training, Health and
safety, Professional equality, Social relations

I 21 financial ratios: Global business results (6), Productivity and capital intensity
(4), Balance sheet ratios (5), Investment efforts (3), Profitability (3)



Not-so-Deep Learning at TAU Causality

Need for Causality Analysis

(very partial) Conclusions
I The firms in the cluster with the best social policy → best productivity
I The firms in the cluster with the worst social policy → worst productivity per

employee . . . but good financial profitability

Can we make recommendations for managers?

I Correlation doesn’t mean causality

I Different causal models for the same observed
correlation

A Machine Learning approach
I From set of labeled pairs (X → Y ,

Y → X, X ⊥ Y and X ‖ Y )

I Learn a causation score

I Derive causation graph . . . and prune it

Possible causal models
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Causality Challenge I. Guyon@TAO

Training Data: labeled densities

Similar to images
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Full causal graph

Amiqap data: positive and negative causal effects
Need for tools to prune/analyze causality graphs
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Causal Modeling

Relevance: From models to causal models

I Decreased sensitivity wrt data distribution

I Support interventions clamping variable value

I Hopes of explanations

Formalism: Functional Causal Models (X1, ...,Xd) Pearl 09

I Pa(Xi ): Direct causes for Xi

I All unobserved influences: noise variables Ei
X1 = f1(E1)
X2 = f2(X1,E2)
X3 = f3(X1,E3)
X4 = f4(E4)
X5 = f5(X3,X4,E5)
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Structure Agnostic Modeling Goudet et al. 18

A dynamic process without self-loops

Xi = fi (X\i ,Ei )
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Structure Agnostic Modeling (2)

Ingredients for fi (Xı,Ei )

I Scaling factors ai ,j impact of Xj on Xi

I Dense layer with non-linear activation function

I Linear readout

X̂i = mt
i tanh(W̄ t

i (ai � X ) + niEi + bi ) + βi
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Structure Agnostic Modeling (3)

Loss function

I Adversarial learning

Li = Exi ,x\i [log D(xi , x\i )] + Eei ,x\i [log(1− D(f̂ (ei , x\i ), x\i ))]

I + Regularization enforcing graph sparsity

Lλ =
d∑

i=1

Li + λ

d∑
i=1

||ai ||1, λ ≥ 0

A competition between d sparse causal mechanisms f̂i and a shared
discriminator D.

Discussion

I No combinatorial search scalability

I Cycles are possible: either genuine; or indicate non-identifiability
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Results on-going work

. . . on standard benchmarks
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AI@TAU
Fundamental

I Optimisation (Riemanian Geometry, SGD) Y. Ollivier, G. Charpiat, MS2

I DNNs structure learning G. Charpiat, I. Guyon

I Causality I. Guyon, M. Sebag

Energy and Safety

I Power Grid Optimisation RTE

I Simulator Calibration and Algorithm Configuration ADEME

I Intrusion detection / Reinforcement Learning Thalès Theresis

I Validation scenarios for the autonomous vehicle Renault

Computational Social Sciences

I Matching jobs and Resumes Qapa

I Quality of life at work and firm performance SES Telecom and FdI

I Social Networks Augure

I Diet vs Socio-demographic vs Health IRS Nutriperso

Algorithm Selection and Configuration

I Continuous optimisation Thalès TRT, winner 1-obj track, BBComp2017

I Combinatorial optimisation IRT SystemX, winner OASC 2017
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