KARAIB http://project.inria.fr/karaib

Bertrand Thirion, bertrand.thirion@inria.fr

KARAIB Knowledge And RepresentAtion Integration on the Brain

Bertrand Thirion, bertrand.thirion@inria.fr

Motivation

- Cognitive concepts and brain pathologies are illdefined [Yarkoni Poldrack 2016]
 - Psychological constructs
 - Pathologies or symptoms ?
- Leverage existing data w. representation learning
 - Mostly Image repositories & publications
 - Identify latent factors

09/09/2020

Combine distributional semantics with brain images

Existing resources

Data source	Data type	Volume	Notes	
OpenNeuro	Raw fMRI data, mostly task-related activation	247 studies (as of June 2019), > 6000 subjects	Wide variety of cognitive tasks	
NeuroVault	Statistical maps, mostly group-level activation maps	80k maps from 2032 dif- ferent collections (June 2019)	idem, noisy annotations.	
NeuroSynth & Neuroquery	Coordinates from the literature	500000 from 14000 publications (June 2019)	Neuroquery developed by PARIETAL	
Human Connec- tome Project	Raw fMRI and diffusion data, mostly rest fMRI	1200 subjects, with $11\mathrm{GB}$ per subject	Homogeneous, high- quality data	
Individual Brain Charting (IBC)	Task fMRI	12 subjects, 50 acqui- sitions covering many cognitive domains	Wide cognitive coverage, acquisition and processing by PI team.	
UK Biobank Im- age Data	Rest and task fMRI	100000 subjects (2021)	A lot of individual behav- ioral information, aging ef- fects, diseases.	

Combine distributional semantics with brain images

Combine distributional semantics with brain images

Aim 1: Build coordinated representations bridging psychology and brain maps

Unsupervised learning from large image sets

Beyond plain dictionary learning

- Nonlinear versions
- Connectivity model
- multi-resolution

Preliminary results: DiFuMo

The most powerful brain atlas for functional data analysis !

09/09/2020

[Dadi et al. Nimg 2020]

Leveraging Modern language models of psychological literature

More powerful (pre-trained) language models in Neuroquery

09/09/2020

Preliminary work: Neuroquery

Semantic structure \rightarrow map concepts with few/no data

[Dockes et al. Elife 2020]

Deep learning for coordinated representations

Multi-task architecture:

- models for Tasks 1 and 2 share parameters.
- Joint Minimization \rightarrow common parameters benefit from both tasks and data sources.

Preliminary result: Cogspaces

 Decoding model that generalizes across datasets Relies on network models [Mensch et al subm]

Preliminary result: Neural networks on a Dictionary

 51 terms decoded on NeuroVault

[Menuet et al. Subm.]

09/09/2020

Aim 2: Assessment of coordinated (image/text) representations

- Statistical inference
 - Aggregation approaches (across clusterings of brain domain or concepts) [Nguyen ICML 2020]
 - Generative approaches:
 - Knockoffs
 - Latent cause models
- Generalization to **non-linear** models

From linked representations to formal reasoning: integration into Neurolang

Neurolang \rightarrow DSL for human neuroscience research \rightarrow combine imaging data, anat. descriptions & ontologies

- 1. represents information in a syntax close to **natural language**
- 2. **Querying ontologies** w. same expressive power as current standards (SPARQL, OWL)
- 3. **Probabilistic** language --- graphical models allowing the implementation of many ML algorithms

09/09/2020

Current integration of meta-analytic queries and information in Neurolang

Aim 3: Provide neuroimaging semanticlearning tools and interfaces

09/09/2020

See regions for: 64 dimensions Download

Software development & dissemination

learn	Nilearn: Machine learning for Neuro-Imaging in Python		SVM Searchilght Nifti IO	Ward clustering ICA Datasets
		Google Custom Search		٩,
arn Home User Guide Example	s Reference			Nipy ecosystem
			News	

Nilearn is a Python module for fast and easy statistical learning on Neurolmaging data.

It leverages the scikit-learn Python toolbox for multivariate statistics with applications such as predictive modelling, classification, decoding, or connectivity analysis.

First Steps Get started with nilearn

Nile

09/09/2020

Examples Visit our example gallery

User Guide

December 2019: Nilearn 0.6.0 released April 17th 2019: Nilearn 0.5.2 released April 12th 2019: Nilearn 0.5.1 released November 2018: Nilearn 0.5.0 released June 14th 2018: Nilearn 0.4.2 released

Ongoing: What's new.

Software

18

Conclusion

- 5-year project
- A new PhD student
- A starting position
- Integrate & push forward are current assets: MODL, DiFuMo, NnoD, neuroquery, NeuroLang, IBC

Thanks

- Gael Varoquaux
- Demian Wassermann
- Aapo Hyvärinen
- Huges Talbot
- A. Mensch, J. Dockès, R.Menuet, K.Dadi, J.A. Chevalier, Binh Nguyen, H.Richard, T.Bazeille
- All Parietal fellows