

ascin

École Polytechnique

Data Science and Mining Team

News

Members

Research

Publications

Teaching External services

Contact

Data Science & Mining group

LIX @ Ecole Polytechnique

ANR CHAIR Advanced Machine/Deep learning for Heterogeneous Large scale Data (ANR/HELAS)

Michalis Vazirgiannis

http://www.lix.polytechnique.fr/dascim/

September 2020

Advanced Machine/Deep learning for Heterogeneous Large scale Data (ANR/HELAS)

- Partners
 - Ecole Polytechnique academic
 - MAIF (Insurance)
 - LINAGORA (OSS/DS)
- Time frame 2020 2204
- Funding for ~6 PhDs + 3 HY postdocs
- . LIX team: Data Science and Mining
 - <u>http://www.lix.polytechnique.fr/dascim/</u>

DASCIM people

Senior Members

- C. D'Ambrosio CR1 CNRS
- L. Liberti DR2 CNRS
- J. Read Assist. Prof (AXA chair)
- M. Vazirgiannis Professor, X Group Leader

Ph.D. students

- S. Limnios
- O. Pallanca APHP
- G. Shang Ph.D. CIFRE (Linagora)
- Y. Yang Ph.D. CIFRE (Tradelab)
- G. Dasoulas PhD Cifre Huawei
- G. Salha PhD Cifre Deezer
- M. Cerulli
- M. Kamalledine
- S. Khalife

Post doctoral researchers

- Y. Nikoletzos –post doc
- A. Tixier post doc
- J. Lutzyer– post doc researcher

Research engineers

- C. Xypolopoulos
- K. Skianis

Interns

- Y. Guo X
- V. Rennard X

Machine/Deep Learning & AI, Big Data Analytics, Optimization, Text Mining/NLP, Graph Mining, Influence Max, Recommendations

Previous research highlights - NLP: Graph-based Text Mining

 bag-of-words vs. graph-of-words: represent a document as a graph to capture word order and dependency.

information retrieval is the activity of obtaining information resources relevant to an information need from a collection of information resources Bag of words: ((activity,1), (collection,1) (information,4), (relevant,1), (resources, 2), (retrieval, 1)..)

"Graph of word approach for ad-hoc information retrieval", F. Rousseau, M. Vazirgiannis, Best paper mention award ACM CIKM 2013

DaSciM Team

Previous research highlights - NLP/Text Mining - Research Contributions

Graph of Words (GoW) approach with applications to

- Ad Hoc Information Retrieval (tw-idf) [CIKM2013]
- Keyword Extraction and summarization of text streams [ECIR2015, EMNLP2016, EACL2017, ACL 2018]
- Event Detection in Textual Streams (twitter, banking,...) [ICWSM2015, ECIR2018]
- Text Categorization/opinion mining/sentiment analysis [ACL2015, EMNLP2015, EMNLP2016, EMNLP2017]
- Document visualization and summarization [ACL2016, ACL2018]
 - GoWis prototype software

Previous research highlights - Machine/Deep Learning for Graphs – Research Topics

	Graph degeneracy		Clustering and community detection	
GRAPH MINING				
Dynamics of social networks	Graph Theory			
	Combinatorics		Influence maximization	
	Spectral Graph Theory			
	Optimization			
Machine Learning				
	Graph anonymization		Graph embeddings and graph similarity	

DaSciM Team

Previous research highlights - Machine/Deep Learning for Graphs

- Novel metrics for node /community importance
 - Extensions of degeneracy to weighted, directed (D-core) and signed graphs [ASONAM2011, ICDM2011, KAIS2013, SIAMDM2013]
 - Scalable Degeneracy-based graph clustering [AAAI2014]
 - 10⁹ node graph clustering and community detection for fraud detection
- Identification of influential spreaders
 - Identification of influential spreaders [Scientific Reports/Nature 2016]
 - Novel influence metrics (citation and social networks) [PLOS2018][INFmetrics2019]
- Graph kernels
 - Matching Node Embeddings for Graph Similarity [AAAI 2017]
 - Degeneracy framework for graph similarity [IJCAI 2018 best paper award]
 - Enhancing graph kernels via successive embeddings [CIKM 2018]
 - Shortest-path graph kernels for document similarity [ENMLP 2017]
 - Grakel Python (scikit) [JMLR2020]- <u>https://github.com>ysig>Grakel</u>

Previous research highlights - Deep Learning for Graphs & NAS

- Kernel Graph CNN [ICANN 2018]
- Message Passing GNNs for Document Understanding [AAAI2020]
- Learning Structural Node Representations on Directed Graphs [COMPLEX NETS 2018]
- Rep the Set: Neural Networks for Learning Set Representations [AISTAS2020]
- Learning Structural Node Representations using Graph Kernels, [IEEE TKDE 2019]

0-corona

1-corona

1-lamina 2-corona 2-lamina

3-corona 3-lamina

34, m = 36

-shel

ANR Chair Context

Graphs emerge a universal structure for information representation and learning for different applications

- social networks, NLP, biomedical/neuro-computing etc. Industrial interest in graph based AI very significant
- Google having a devoted lab on relevant research
- *Tencent* organizing the Alchemy graph regression challenge
- immense scientific production in the last years in the such as *Deep Learning* for *Graph Neural Networks* and *NLP/Text Mining*.
- Both topics addressed in the chair
- Industrial partners have an explicit interest in the results of the chair
- Research topics that are original and risky but also connected to real life applications and industrial needs. The main research axes are the following:

MAIN RESEARCH AXES - Learning Graph Representations

- Graph-structured data has grown in a wide range of domains (social networks, bioinformatics, chemo-informatics, NLP, pharma)
- Learning useful graph representations have many real-world applications.
- Graph Neural Networks (GNNs) have recently emerged as a general framework for addressing graph-related machine learning tasks
 - strong empirical performance
 - their expressive power and explainability
 - GNNs consist of two phases:
 - message passing phase, nodes update their feature vector aggregating neighbours' feature vectors => vector representation for each node
 - readout phase, network computes a feature vector for the entire graph, applying a permutation invariant function to nodes' representations (e.g., sum, average) => aggregated to produce a graph representation.
 - GNN Limitations:
 - two-step approaches
 - simplistic nature of the permutation invariant functions restrict the representation power of these networks.

Learning Graph Representations - Objectives

- Integration of graph kernels into the GNN design
 - In many cases, graph kernels outperform state-of-the-art GNN methods.
- Design novel neural network architectures
 - in contrast to standard GNNs, consist of a single step.
 - ideas from random walk graph kernels permutation invariant,
 - Graph based feature extraction based on graph comparison
 - employed graph comparison algorithm differentiable backprop possible
 - highly interpretable graph features extracted
- Novel approaches to aggregate the representations of sets of nodes.
 - new family of graph kernels employ a message passing procedure.
 - aggregation to be more sophisticated than the traditional ones (e.g., sum, average, max).

Innovation

- envisaged GNN models; novel aggregation mechanismsl expressive node representations

- proposed architectures will be able to distinguish three fundamental graph properties which standard GNNs cannot

(connectivity, bipartiteness και triangle-freeness)

- applications: NLP domain for insurance domain – one of the industrial partners is in this sector.

MAIN RESEARCH AXES - Deep learning methods for NLP applications / French linguistic resources

- Deep Learning for Spoken Language Understanding and Summarization producing relevant linguistic resources for the French Language.
- Research tasks

i. creation of linguistic resources for French language in cooperation with the industrial partners Linagora and MAIF (see commitment letters),

- ii. Resources:
 - a large corpus collected from the French Web (~330GB cleaned text)
 - word embeddings (W2V and ELMO),
 - n-gram data sets, stemmer etc.
- iii. Machine learning tasks
 - automated summarization, entity extraction and classification) for *insurance* (i.e. *MAIF*)
 - meeting summarization (i.e. Linagora)
 - legal documents analysis relevant community, see: https://smartlawhub.net/people/

Chair Teaching / Training apsects

Current teaching:

- Machine/Deep Learning (M1 @ X)
- Advanced Topics in Artificial Intelligence (M1 @ X)
- Deep Learning for NLP and Graphs (M2 Data Science/MVA)
- Data Mining @ SPEIT/Jiatong, Shangai
- Machine Learning* Tsinghua, Beijing

Professional training

- Data Science Starter Program (@EXED/X)
- Advanced AI Program (@EXED/X)

New methods will be integrated to the M2 and professional training ones

Thank You!

www.lix.polytechnique.fr/dascim/

We are hiring...

DaSciM Team