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What is causality?



A big question! 



Extremely short into to causality 
(in the context of statistics and learning)

• Aspirin caused my headache to disappear

• The car crashed because it didn’t brake in time

• The students succeeded because of the new teacher



Extremely short into to causality 
(in the context of statistics and learning)

• Aspirin caused my headache to disappear
• Had I not taken Aspirin, I would still have had the headache

• The car crashed because it didn’t brake in time
• Had the car braked in time, it wouldn’t have crashed

• The students succeeded because of the new teacher
• Had the students remained with the old teacher, they wouldn’t have 

succeeded



Extremely short into to causality 
(in the context of statistics and learning)

• Aspirin caused my headache to disappear
• Had I not taken Aspirin, I would sFll have had the headache

• The car crashed because it didn’t brake in Fme
• Had the car braked in Fme, it wouldn’t have crashed

• The students succeeded because of the new teacher
• Had the students remained with the old teacher, they wouldn’t have 

succeeded

counterfactuals



Extremely short into to causality 
(in the context of statistics and learning)

• Aspirin caused my headache to disappear
• Had I not taken Aspirin, I would still have had the headache

• The car crashed because it didn’t brake in time
• Had the car braked in time, it wouldn’t have crashed

• The students succeeded because of the new teacher
• Had the students remained with the old teacher, they wouldn’t have 

succeeded

Counterfactuals:
imagine a world 

where everything is 
the same except 

the “cause” 



Counterfactuals

• Often in terms of imagined interventions

• Never directly observable – we need a causal model
• “Counterfactual world” is sometimes statistically identical to 

observed reality, for example in Randomized Controlled Trials
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Causal effect inference questions

• Which medication will make patients better?

• Which economic policy will lower unemployment?

• The effects of actions on outcomes



Causal effect inference from observational data

• Which medication will make patients better?
• Infer from medical records

• Which economic policy will lower unemployment?
• Infer from past economic measurement 

• The effects of actions on outcomes



Causal inference from observational data - confounding

• Which medicaFon will make paFents beWer?
• Infer from medical records
• Maybe younger/wealthier/female/… paFents tend to receive medicaFon A over B?

• Which economic policy will lower unemployment?
• Infer from past economic measurement 
• Maybe policy was enacted in beWer past economic Fmes?



This part based on work with Fredrik Johansson 
(MITàChalmers), Nathan Kallus (Cornell) and David 
Sontag (MIT)

(i) Johansson, S, Sontag, (2016). Learning representations for counterfactual 
inference. In International Conference on Machine Learning.

(ii) Shalit, U., Johansson, F., & Sontag, D. (2017). Estimating individual treatment 
effect: generalization bounds and algorithms. In International Conference on 
Machine Learning.

(iii) Johansson, Kallus, S, Sontag, (2020)
Generalization bounds and representation learning for estimation of potential 
outcomes and causal effects. arXiv preprint arXiv:2001.07426.
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𝑋: patient features
𝐶𝐴𝑇𝐸 𝑋 := 𝔼 𝑌(1) − 𝑌(0)|𝑋

• We never directly observe CATE
• We only see either 𝑌(1) or 𝑌 0
• The choice is not random
• How to estimate the CATE function?

𝑌(0), 𝑌(1): potential outcomes
(Rubin-Neyman causal model)



Estimate potential outcomes

• Outcomes under treatment and control, 𝑌 1 , 𝑌 0 ∈ ℝ

• Treatments 𝑇 ∈ 0,1 , 𝑌 = 𝑇𝑌 1 + 1 − 𝑇 𝑌 0

• Confounders 𝑋 ∈ ℝB

• Condi6onal effect (CATE) 𝜏 𝑋 ≔ 𝔼[𝑌 1 − 𝑌 0 ∣ 𝑋]

Only one observed for any one patient!



Observational datasets: Rheumatoid arthritis

► Historical records of treatments and outcomes

Patient Age Prior disease 
activity

Observed 
treatment

Disease 
activity

Anna 54 High A High
Calvin 52 High A Low
John 48 Low B Low
Peter 60 Low B High

𝑋 𝑇 𝑌



Observational datasets: Rheumatoid arthritis

► Unobserved counterfactual outcomes

Patient Age Prior disease 
activity

Disease
activity (A)

Disease 
activity (B)

Anna 54 High High ?
Calvin 52 High Low ?
John 48 Low ? Low
Peter 60 Low ? High

Outcomes under
alternative treatments

𝑋 𝑌(0) 𝑌 1



Estimating potential outcomes
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𝔼[𝑌 1 ∣ 𝑋]

Effect of treatment
τ(𝑥)
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𝑝K 𝑋 ≔ 𝑝(𝑋 ∣ 𝑇 = 0)
Treated group

Control group

𝑝L 𝑋 ≔ 𝑝(𝑋 ∣ 𝑇 = 1)

Estimating potential outcomes
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Formalizing sufficient assumptions

1. Ignorability (no unmeasured confounders):
“Patients with similar 𝑋 respond similarly” 

∀𝑡 ∶ 𝑌 𝑡 ⊥ 𝑇 ∣ 𝑋

2. Overlap: “Similar patients with different treatments exist”

∀𝑡, 𝑥 ∶ 𝑝 𝑇 = 𝑡 𝑋 = 𝑥 > 0

3. SUTVA: “No patient-patient interference”

4. Consistency: “We observe 𝑌 𝑡 for patients with 𝑇 = 𝑡”



Take-aways

1. These are strong assumptions that 
don’t always hold

2. Even when they do, estimation is still 
challenging



Classical view

• Causal estimation often focused on parameter estimation

E.g., assume:   𝑌 = 𝛽S𝑋 + 𝜽𝑇 + 𝜖,    Goal: find 𝜽!

Treatment effectObserved outcome



Machine learning view

• Causal estimation often focused on parameter estimation

E.g., assume:   𝑌 = 𝛽S𝑋 + 𝜽𝑇 + 𝜖,    Goal: find 𝜽!

• ML view: Find prediction of 𝜏 = 𝑌 1 − 𝑌(0) with small error 𝐿 �̂�, 𝜏

�̂�∗ = arg min
_̀∈𝒯

𝔼 𝐿 �̂�, 𝜏 = arg min
_̀∈𝒯

𝔼 �̂� 𝑋 − 𝜏 b

Treatment effectObserved outcome



► Treatment is assigned unfirmly at random: 𝑝 𝑇 = 1 𝑋 = 𝑃 𝑇 = 1

► Here: every dot is a unit, color indicates observed treatment

► Predict outcome under unobserved treatment

Easier: Randomized Controlled Trials (RCT)

𝑥L

𝑥b

Control, 𝑇 = 0 Treated, 𝑇 = 1

“Training set” distribution     = “Test set” distribution



► In randomized control trials, there is no confounding – just do regression!

► New architecture for estimating counterfactuals and CATE

► One “head” per potential outcome – avoids washing away treatment
► Shared representation layers Φ 𝑥 for sample efficiency

Neural network architecture: TARNet
(Treatment-Agnostic Representation Network)

𝑇

𝑥
𝐿(ℎL(Φ), 𝑌(1))

Φ

ℎK
𝐿 ℎK Φ , 𝑌(0)

…

…

…

ℎL

𝑖𝑓 𝑇 = 0

𝑖𝑓 𝑇 = 1



► Predict outcome under unobserved treatment
► Treatment is not assigned equally at random: 𝑝 𝑇 = 1 𝑋 ≠ 𝑃 𝑇 = 1
► There is a non-negligible difference between treatment group distributions

Observational studies: 
test ≠ train

𝑑

Control, 𝑇 = 0 Treated, 𝑇 = 1

Example:
A difference in means

“Treated tend to be younger”

𝑥L

𝑥b



► Learn a representation Φ of the data that makes it more like an RCT
► A shared representation helps identify meaningful interactions
► Penalize the distributional distance between treatment groups

New type of bias-variance tradeoff 

Representation learning

Φ(𝑥)L

Φ(𝑥)b

Φ 𝑥
Representation space

𝑥L

𝑥b

Original space

Control, 𝑇 = 0 Treated, 𝑇 = 1 Control, 𝑇 = 0 Treated, 𝑇 = 1



► We do not want treatment groups to be identical

Imbalance in representation space

Φ(𝑥)L

Φ(𝑥)b

𝑝jklL 𝑥 ≠ 𝑝jklK 𝑥
Φ 𝑥

𝑥L

𝑥b

Treatment group imbalance

Control, 𝑇 = 0 Treated, 𝑇 = 1



► Regularizer to improve counterfactual estimation
► Penalize treatment distributional distance in representation space

► Integral Probability Metrics (IPM) such as Wasserstein distance and MMD

Integral probability metric penalty

𝑇

𝑥
𝐿(ℎL(Φ), 𝑌(1))

Φ

IPMp(�̂�jklK, �̂�jklL)
ℎK

𝐿 ℎK Φ , 𝑌(0)
…

…

…

ℎL

𝑖𝑓 𝑇 = 0

𝑖𝑓 𝑇 = 1

IPMq 𝑝K, 𝑝L = sup
u∈p

v
𝒮
𝑔 𝑠 𝑝K 𝑠 − 𝑝L 𝑠 𝑑𝑠With G a function family:
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► Precision in Estimation of 
Heterogeneous Effects1:

► {𝐶𝐴𝑇𝐸j,| = ℎ Φ 𝑥 , 1 − ℎ(Φ 𝑥 , 0)

𝜖}~k�(𝜙, ℎ) = v
�

{𝐶𝐴𝑇𝐸j,| − CATE 𝑥
b
𝑝 𝑥 𝑑𝑥

𝜖}~k�(𝜙, ℎ) ≤ 2 𝜖�klK Φ, ℎ + 𝜖�klL Φ, ℎ + 𝐵j IPMq 𝑝jklL, 𝑝jklK

𝜖�klK = v
�
�𝑌 0 − 𝑌 0

b
𝑝�lK 𝑥 𝑑𝑥

► Factual per-treatment group 
prediction error

Effect error Prediction error Treatment group distance

1Hill, Journal of Computational and Graphical Statistics 2011

► Theorem 1:

𝜖�klL = v
�
�𝑌 1 − 𝑌 1

b
𝑝�lL 𝑥 𝑑𝑥

Individual-level treatment effect generalization bound



• Problem with Theorem 1: 
Too loose when we have overlap + infinite samples 
• We should be able to achieve the predicFon error itself on either 

group

𝜖CATE ≤ 2 𝜖�klK Φ, ℎ + 𝜖�klL Φ, ℎ + 𝐵j IPMq 𝑝jklL, 𝑝jklK

Effect error Prediction error Treatment group distance

► Theorem 1:



► Our full architecture learns a representation Φ(x), a re-weighting 
𝑤�(𝑥) and hypotheses ℎ�(Φ) to trade-off between the re-weighted 
loss 𝑤ℓ and imbalance between re-weighted representations

Trading off accuracy for balance

𝑥 Φ
ℎL

ℎK

𝑤 IPM(𝑤K𝑝j�lK, 𝑤L𝑝j�lL)

𝑤ℓ 𝑡

Context Repres.

Hypotheses

Weighting Imbalance

Weighted	loss

Treatment

DNN

Φ



► Theorem 2*: (Representation learning)

► Letting Φ 𝑥 = 𝑥, and 𝑤�(𝑥) be inverse propensity weights, we 
recover classic result

► Minimizing a weighted loss and IPM converge to the 
representation and hypothesis that minimize CATE error

Individual-treatment effect 
generalization bound

𝜖CATE ≤ 2 �
�∈{K,L}

𝜖�
�� Φ, ℎ + 𝐵j IPMq 𝑝jL �(𝑥),𝑤� 𝑝j� (𝑥)

Effect risk Re-weighted factual loss Imbalance of re-weighted representations

*Extension to finite samples available



► No ground truth, similar to off-policy evaluation in 
reinforcement learning

Evaluating Individual Treatment Effect (CATE) Estimates
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► No ground truth, similar to off-policy evaluation in 
reinforcement learning

► Requires either:
► Knowledge of the true outcome (synthetic)
► Knowledge of treatment assignment policy 

(e.g. a randomized controlled trial)

► Our framework has proven effective in both settings

Evaluating Individual Treatment Effect (CATE) Estimates



IHDP Benchmark1

► The Infant Health and Development Program (IHDP) 
► Studied the effects of home visits and other interventions

► Real covariates and treatment, synthesized outcome

► Overlap is not satisfied (by design)

► Used to evaluate MSE in CATE prediction

1Hill, JCGS, 2011



Empirical results

Method CATE MSE

BART1 2.3 ± 0.1

Neural net 2.0 ± 0.0

Shared rep.2 𝟏. 𝟎 ± 𝟎. 𝟎

Shared rep.
+ invariance2 𝟎. 𝟖 ± 𝟎. 𝟎

Shared rep.
+ invariance + weighting3 𝟎. 𝟕 ± 𝟎. 𝟎

► BART, Bayesian Additive Regression 
Trees, are state-of-the-art baselines

► Standard neural networks 
competitive

► Shared representation learning with 
ERM halves the MSE on IHDP2

► Minimizing upper bounds on risk, 
including 𝑑ℋ further reduces the MSE

1Hill, JCGS, 2011, 2S., Johansson, Sontag. ICML, 2017, 3Johansson, Kallus, S., Sontag. arXiv, 2018



Intermediate conclusions

► ML is well understood when test data ≈ training data
► Learning individualized policies from observational data

requires going beyond test ≈ train 
► Fewer/worse guarantees when assumptions are violated



Outline

•ML for causal inference
• Causal inference for ML
• Off-policy evaluation in a partially observable Markov decision 

process
• Robust learning for unsupervised covariate shift



Outline

•ML for causal inference
• Causal inference for ML
• Off-policy evaluation in a partially observable Markov decision 

process
• Robust learning for unsupervised covariate shift

“Off-Policy Evaluation in Partially 
Observable Environments”,

Tennenholtz, Mannor, S
AAAI 2020



Healthcare with time-varying decisions

• Physicians make ongoing decisions: treat, see change in patients 
state, modify treatment, and so on 

Doctor

Patient



Healthcare with time-varying decisions

• Maps very well to reinforcement learning paradigm

Figure: Shweta Bhatt



Reinforcement learning (RL) and causal inference

From causal inference perspective
• RL usually assumes we can 

intervene directly
•à mostly about how to 

experiment optimally in
a dynamic environment
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From causal inference perspective
• RL usually assumes we can 

intervene directly
•à mostly about how to 

experiment optimally in 
a dynamic environment

From RL perspective
• Causal inference usually deals 

with cases we cannot intervene 
directly
• Causal inference usually focuses 

on single point-in-time actions
•à mostly about off-policy 

evaluation of a simple policy 
such as “treat everyone”

Reinforcement learning (RL) and causal inference



A meePng point of RL and causal inference
• When performing off-policy evaluation of data from

i. dynamic environment with ongoing actions
ii. while we possibly do not have access to the same data as the agent

• Example: learning from records of physicians treating patients in an 
intensive care unit (ICU)
• Mistakes were made: applying RL to observational intensive care unit data 

without considering hidden confounders or overlap 
(common support / positivity)
(see “Guidelines for Reinforcement Learning in Healthcare” Gottesman et al. 2019)
• In RL nomenclature, hidden confounding can be described by a Partially 

Observable Markov Decision Process (POMDP)



Partially Observable Markov Decision Process 
(POMDP): some formalism 

7
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• Observe data from 𝝅𝒃, with 𝐮𝐭 unobserved

POMDP causal graph



• Observe data from 𝝅𝒃, with 𝐮𝐭 unobserved…
• Evaluate a proposed policy 𝝅𝒆(𝒛𝒕) in terms of 

policy value (discounted over a finite horizon)
• Why a function of 𝐳t ? Because 𝐮t is unobserved
• How to evaluate 𝝅𝒆(𝒛𝒕) given only observations 

from 𝝅𝒃,  with 𝐮t unobserved?
• This is a problem anyone trying to create 

optimal dynamic treatment policies with 
observational data must address

Our goal: evaluate a new 
policy 𝝅𝒆 given data from 𝝅𝒃



• Observe data from 𝝅𝒃, with 𝐮𝐭 unobserved…
• Evaluate a proposed policy 𝝅𝒆(𝒛𝒕) in terms of 

policy value (discounted over a finite horizon)
• Denote 𝑝𝝅𝒃(𝑎, 𝑏, 𝑐, … |𝑑, 𝑒, 𝑓, … ) probabilities 

from observed behavioral policy
• Can sample from this distribution

• Denote 𝑝𝝅𝒆(𝑎, 𝑏, 𝑐, … |𝑑, 𝑒, 𝑓, … ) probabilities 
from targeted evaluation policy
• Cannot sample from this distribution

Our goal: evaluate a new 
policy 𝝅𝒆 given data from 𝝅𝒃



Our goal: evaluate a new 
policy 𝝅𝒆 given data from 𝝅𝒃

• Observing data from 𝝅𝒃, with 𝐮𝐭 unobserved
evaluate a proposed policy 𝝅𝒆(𝐳𝐭) in terms of 
policy value (discounted over a finite horizon)
• Without further assumptions:

IMPOSSIBLE 
• Example: ICU doctors treating sicker patients 

more aggressively
• Impossible even when conditioning on entire 

observable history 𝐳𝟏, 𝐚𝟏, 𝒓𝟏 ,… , 𝐳𝐓, 𝐚𝐓, 𝒓𝐓
• Due to hidden confounding by 𝐮𝐭
• But much harder: confounder<->action dynamics



Proxies and negative controls
• Miao, Geng, & Tchetgen Tchetgen. 

“Identifying causal effects with proxy 
variables of an unmeasured confounder.” 
Biometrika (2018)

• Only 𝒖 is unobserved
• Goal: identify the causal effect 

of 𝐚 on 𝐫
• 𝐳 ⫫ 𝐰 | 𝒖
• In general: impossible
• New identification condition:

matrices 𝑀¹º(𝑎) = 𝑝(𝐰 = 𝑖|𝐳 = j, 𝐚 = 𝑎)
are invertible for all 𝑎

• Requires 𝐰 and 𝐳 to be discrete with
as many categories as discrete 𝒖

𝒖

𝐚 𝐫

𝐳 𝐰



• Assume 𝐳𝐭 are discrete with ≥ categories as 𝐮𝐭
(untestable from data)
• Let 𝑀¹º

� 𝑎 = 𝑝𝝅𝒃 𝐳𝐭 = 𝑖 𝐳𝐭 𝟏 = 𝑗, 𝐚𝐭 = 𝑎
• Theorem:

If 𝑀�(𝑎) are all invertible then we can evaluate 
value of a proposed policy 𝝅𝒆(𝒛𝒕)
given observational data gathered under 𝝅𝒃,
without observing 𝐮𝐭
• Future and past observations 𝒛𝒕 are 

conditionally independent proxies for 
unobserved 𝐮𝐭

Our goal: evaluate a new 
policy 𝝅𝒆 given data from 𝝅𝒃

Invertibility example
If z¿ are binary, then a sufficient condition for 
invertiblity of 𝑀�(𝑎) is
𝑝 z¿ = 1 z¿ L = 1, 𝑎 ≠ 𝑝 z¿ = 1 z¿ L = 0, 𝑎



• Allow off-policy evaluation for class of POMDPs
• No need to measure or even know what is 𝐮𝐭
• As usual in Causal Inference, some of the 

assumptions are unverifiable from data

Assumptions
1. Assume 𝐳𝐭 are discrete with ≥ categories as 𝐮𝐭
2. Matrices 𝑀¹º

� 𝑎 = 𝑝𝝅𝒃 𝐳𝐭 = 𝑖 𝐳𝐭 𝟏 = 𝑗, 𝐚𝐭 = 𝑎
are invertible for all 𝑎 and 𝑡



• Observed sequence 𝜏 = 𝑧K, 𝑎K,… , 𝑧k, 𝑎k ∈ 𝒯k
• 𝑁¹º� 𝑎 = 𝑝𝝅𝒃 𝐳𝐭 = 𝑖, 𝐳𝐭 𝟏 = 𝑧� L 𝐳𝐭 𝟐 = 𝑗, 𝐚𝐭 𝟏 = 𝑎
•𝑊� 𝜏 = 𝑀� 𝑎�  L𝑁�(𝑎� L)
• 𝑄¹K(𝜏) = ∑º𝑀K 𝑎Æ ¹º

 L 𝑝𝝅𝒃(𝒛𝟎 = 𝑗)
• Ω 𝜏 = ∏�lK

k 𝑊� 𝜏 ⋅ 𝑄K (𝜏)
• ΛË 𝜏 =∏�lK

k 𝝅𝒆(𝑎�|𝑧K, 𝑎K, … , 𝑧� L, 𝑎� L, 𝑧�)
• Then:
𝑝𝝅𝒆 𝑟� = ∑`∈𝒯Í ΛË 𝜏 𝑝

𝝅𝒃(𝑟�, 𝑧�|𝑎�, 𝑧� L) Ω 𝜏

Assumptions
1. Assume 𝐳𝐭 are discrete with ≥ categories as 𝐮𝐭
2. Matrices 𝑀¹º

� 𝑎 = 𝑝𝝅𝒃 𝐳𝐭 = 𝑖 𝐳𝐭 𝟏 = 𝑗, 𝐚𝐭 = 𝑎
are invertible for all 𝑎 and 𝑡



Off-policy POMDP evaluation

• The above evaluation requires estimating the inverses of 
many conditional probability tables 
• Scales poorly statistically
•We introduce another causal model called 

decoupled-POMDP
• Similar causal graph
• Significantly reduces the dimensions and improves condition 

number of the estimated inverse matrices



Decoupled POMDP



Off-policy POMDP evaluation

• The above evaluation requires estimating the inverses of 
many conditional probability tables 
• Scales poorly statistically
•We introduce another causal model called 

decoupled-POMDP
• Similar causal graph
• Significantly reduces the dimensions and improves condition 

number of the estimated inverse matrices
• Current challenge: scaling to realistic health data



Outline

•ML for causal inference
• Causal inference for ML
• Off-policy evaluation in a partially observable Markov decision 

process
• Robust learning for unsupervised covariate shift



Outline

•ML for causal inference
• Causal inference for ML
• Off-policy evaluation in a partially observable Markov decision 

process
• Robust learning for unsupervised covariate shift

“Robust learning with the Hilbert-
Schmidt independence criterion”,

Greenfeld & S
arXiv:1910.00270



Classic non-causal tasks in machine learning: 
many success stories
•Classification
• ImageNet
•MNIST
• TIMIT (sound)
• Sentiment analysis

• Prediction 
•Which patients will die?
•Which users will click?
• (under current practice)



Failures of ML Classification models



Failures of ML Classification models

test set ≠ train set,
but we know humans succeed here  



How to learn models which are robust to 
a-priori unknown changes in test distribution?

• Source distribution 𝑃Î(𝑋, 𝑌)
• Learn model that works well on unknown 

Target distributions 𝑃Ï 𝑋, 𝑌 ∈ 𝒬

Set of 
possible 
targets
𝒬

Source
𝑃Î



• Source distribution 𝑃Î 𝑋, 𝑌
• Learn model that works well on all target distributions 𝑃Ï 𝑋, 𝑌 ∈ 𝒬

• What is 𝒬?
• We assume Covariate Shift:

For all 𝑃Ï 𝑋, 𝑌 ∈ 𝒬, 
𝑃Ï 𝑌|𝑋 = 𝑃Î(𝑌|𝑋)

• Further restrictions on 𝒬 to follow
• Covariate shift is easy if learning 𝑃Î 𝑌 𝑋 is easy

• Focus on tasks where it’s hard

How to learn models which are robust to 
a-priori unknown changes in test distribution?



Unsupervised covariate shift

• A model that works well even when the underlying distribution of 
instances changes
• Works as long as 𝑃(𝑌|𝑋) is stable
• When does this happen?



Causal mechanisms are stable



Learning with an independence criterion

• 𝑋 causes 𝑌, structural causal model:
𝒀 = 𝒇∗ 𝑿 + 𝝐, 𝝐 ⫫ 𝑿

• 𝑓∗ 𝑥 is the mechanism tying 𝑋 to 𝑌
• 𝜖 is independent addiKve noise
• Therefore, 𝑌 − 𝑓∗ 𝑋 ⫫ 𝑋
• Mooij, Janzing, Peters & Schölkopf (2009):

Learn structure of causal models by learning funcFons 𝑓 such that  
𝑌 − 𝑓 𝑋 is approximately independent of 𝑋
• Need a non-parametric measure of independence 
• Hilbert-Schmidt independence criterion, HSIC



Hilbert-Schmidt independence criterion: HSIC

• Let 𝑋, 𝑌 be two metric spaces with a joint distribution 𝑃(𝑋, 𝑌)
• 𝒢Õ and 𝒢Ö are reproducing kernel Hilbert spaces on 𝑋 and 𝑌 induced by 

kernels 𝐾(⋅,⋅) and 𝐿(⋅,⋅) respectively
• 𝐻𝑆𝐼𝐶(𝑋, 𝑌)measures the degree of dependence between 𝑋 and 𝑌
• Empirical version: Sample 𝑥L, 𝑦L ,… , 𝑥Ü, 𝑦Ü

Denote (some abuse of notation) 
𝐾 the 𝑛 × 𝑛 kernel matrix on 𝑋, 𝐿 is 𝑛 × 𝑛 kernel matrix on 𝑌
• {𝐻𝑆𝐼𝐶 (𝑋, 𝑌; 𝒢Õ, 𝒢Ö) =

L
Ü L à 𝑡𝑟 𝐾𝐻𝐿𝐻

𝐻 is a centering matrix, 𝐻¹º = 𝛿¹º −
L
Ü



Learning with HSIC

• Hypothesis class ℋ
• Classic learning for loss ℓ, e.g. squared loss:

min
|∈ℋ

𝔼 ℓ(𝑌, ℎ 𝑋 )

• Learning with HSIC (Mooij et al., 2009):

min
|∈ℋ

𝐻𝑆𝐼𝐶 𝑋, 𝑌 − ℎ 𝑋 ; 𝒢Õ, 𝒢Ö



Learning with HSIC

• Learning with HSIC (Mooij et al., 2009):

min
|∈ℋ

𝐻𝑆𝐼𝐶 𝑋, 𝑌 − ℎ 𝑋 ; 𝒢Õ, 𝒢Ö

• Recall: 𝑌 − 𝑓∗ 𝑋 ⫫ 𝑋
• If objective equals 0 then ℎ∗ 𝑋 = 𝑓∗ 𝑥 + 𝑏 for some constant 𝑏
• Can learn up to an additive bias term



Learning with HSIC

• Learning with HSIC (Mooij et al., 2009):

min
|∈ℋ

𝐻𝑆𝐼𝐶 𝑋, 𝑌 − ℎ 𝑋 ; 𝒢Õ, 𝒢Ö

• DifferenFable with respect to ℎ 𝑋
• We opFmize with SGD using mini-batches to approximate HSIC



Theoretical results

• Learnability: minimizing HSIC-loss over a sample leads to 
generalization
• Robustness: minimizing HSIC-loss leads to tightly-bounded 

error in unsupervised covariate shift
• If denstiy ratio

â�ãäåæ� �
âçèéäêæ �

is “nice” in the sense of low RKHS norm.



Experiments – rotated MNIST (Heinze-Deml & Meinshausen 2017)
• Train on ordinary MNIST
• Test on MNIST rotated uniformly at random [-45°,45°] 
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• Train on ordinary MNIST
• Test on MNIST rotated uniformly at random [-45°,45°] 
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Outline

•ML for causal inference
• Causal inference for ML
• Off-policy evaluaFon in a parFally observable Markov decision 

process 
• Robust learning for unsupervised covariate shiT



Summary
•Machine learning  for causal-

inference:
• Individual-level treatment effects from 

observational data - robustness to 
treatment assignments process

• Using ecently proposed “negative 
control” to create first Off-Policy 
Evaluation scheme for POMDPs, with 
past and future in the role of the 
controls
• Learning models robust against 

unknown covariate shift
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Even estimating average effects from 
observational data is hard! 
Do we believe we can estimate 
individual-level effects?
• Causal identification assumptions:
• Hidden confounding: 

No unmeasured factors that 
affect both treatment and outcome 
• Common support: 
𝑇 = 1 and 𝑇 = 0 populations should be similar
• Accurate effect estimates:

be able to approximate 𝔼 𝑌|𝑥, 𝑇 = 𝑡



Even esPmaPng average effects from 
observaPonal data is hard! 
Do we believe we can esPmate 
individual-level effects?
• Causal identification assumptions:
• Hidden confounding
• Common support
• Accurate effect estimates

•We focus on tasks where
we hope we can address 
all three concerns
• And still be useful

• Designing for causal identification 



You have 
condition A.
Treatment 
options are 

T=0, T=1



Obviously, 
give T=0

No need for 
algorithmic 

decision support



Obviously, 
give T=0

Obviously, 
give T=1

No need for 
algorithmic 

decision support



Obviously, 
give T=0
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I’m not so 
sure…



Obviously, 
give T=1

Obviously, 
give T=0

I’m not so 
sure…

Recommend 
T=0



Obviously, 
give T=1

Obviously, 
give T=0

I’m not so 
sure…

Recommend 
T=0

• If decision could really go either way:
Recommending a suboptimal action 
is not as risky



• If decision could really go either way:
Recommending a subopFmal acFon 
is not as risky
• Need not make explicit 

recommendaFon

Obviously, 
give T=1

Obviously, 
give T=0

I’m not so 
sure…

T=0

T=1



Estimating average effects is hard! 
When do we believe we can estimate 
individual-level effects?

• Causal identification assumptions:
• Hidden confounding à

conscious point in time decision by trained 
decision makers
• Common supportà

focus on cases with explicit decision uncertainty
• Accurate effect estimatesà
sign(𝐶𝐴𝑇𝐸)more important than exact number



Estimating average effects is hard! 
When do we believe we can estimate 
individual-level effects?

• We don’t need to esFmate the effects for each 
paFent correctly
• Suffice to give useful recommendaFon in cases of 

physician uncertainty
• Physician uncertainty is exactly where we will have 

more data regarding treatment alternaFves for 
similar paFents
• Include a “we have no recommenda6on” op6on



We are 
developing a 
best-practice 
“pipeline” for 

decision support 
models in clinical 

point-in-time 
decision support



Focus on process, 
not specific models



Preliminary results – study 2
Acute disease treatment

• Investigating the causal effects of diuretics on kidney function in 
hospitalized acute heart failure patients with kidney injury in Rambam 
Medical Center
• Physicians tell us:

They have poor guidance how to prescribe diuretics and blood-pressure 
medications to these patients
• 2157 patients
• More than 200 covariates which are potential confounders: 

demographics, lab tests, diagnoses, medications, administrative and more
• Empirically: half of cohort had increased diuretics, 

half had decreased diuretics



Preliminary results – study 2
Acute disease treatment

• T=1: “Decrease diuretics”
• Often improves kidney function
• Might hurt heart function

• Physicians must balance multiple outcomes
• For now we only examined effect on kidney function



Policy value

• From {𝐶𝐴𝑇𝐸(𝑥) we can derive a policy recommendaFon for treatment
• Simple: 𝜋 𝑥 = 𝕀 {𝐶𝐴𝑇𝐸 𝑥 > 0
• For any policy 𝜋 we can esFmate its policy value:

expected outcome if paFents were treated by policy 𝜋
• We use Doubly-Robust policy value esFmate (Dudík et al. 2011,2014)



• Increase or decrease 
diuretics?
• Policy value: % 

improvement in kidney 
function (creatinine)
• 100%: excellent
• 0%: no improvement 

• Recommendations for 
461 out of 530 (test set)
• {𝐶𝐴𝑇𝐸: T-learner XGBoost
• 𝜋 𝑥 = 𝕀 {𝐶𝐴𝑇𝐸 𝑥 > 0
• Bootstrap confidence 

intervals
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• Increase or decrease 
diuretics?
• Policy value: % 

improvement in kidney 
function (creatinine)
• 100%: excellent
• 0%: no improvement 

• Recommendations for 
461 out of 530 (test set)
• {𝐶𝐴𝑇𝐸: T-learner XGBoost
• 𝜋 𝑥 = 𝕀 {𝐶𝐴𝑇𝐸 𝑥 > 0
• Bootstrap confidence 
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• Our recommendations 
better than current practice 
(p=0.015)
• Our recommendations have 

approximately same value 
as “decrease diuretics for all 
patients”
• Our recommendations 

decrease diuretics for only 
50%  of patients
•More flexibility with respect 

to other outcomes
• Effect on other outcomes is 

work in progress
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