## Building specifications for perception systems: formal proofs of deep networks trained with simulators

Julien Girard-Satabin (CEA LIST), Guillaume Charpiat (INRIA TAU), Zakaria Chihani (CEA LIST), Marc Schoenauer (INRIA TAU) 10 septembre 2019











#### **Outline**

Necessity to certify deep neural networks and challenges

Glory and faults of deep learning software

How to certify classical software?

Formal methods

Challenges of deep neural networks verification

Deep learning verification : a review

Verification of perception models trained with simulators

Proof of concept and future works









Necessity to certify deep neural

networks and challenges

#### Deep neural networks are awesome...

Active research community, profusion of tools, lot of industrial applications...











#### Deep neural networks are awesome...

Active research community, profusion of tools, lot of industrial applications..... yet they are not perfect



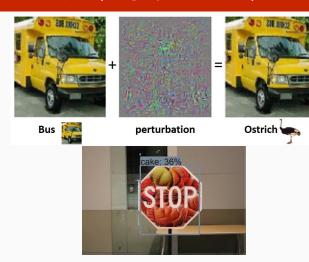








#### Adversarial examples (Szegedy et al. 2013)



Innocuous to humans, transferable between datasets, not systematic detection method



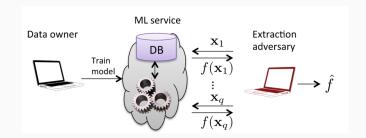








#### Model theft (Tramèr et al. 2018)













#### Dataset poisoning (Shafahi et al. 2018)













#### Context: critical systems

A critical system is a system which failure may cause physical harm, economical losses or damage the environment









#### Context: critical systems

A critical system is a system which failure may cause physical harm, economical losses or damage the environment

















#### How to bring confidence in software systems?

**Goal**: guarantee that the system respects a safety specification

 $\phi$ : an autonomous car will not roll over pedestrians









#### What about tests?

| Test on real environment    | real conditions                                                | cumbersome, potentially<br>hazardous, non<br>exhaustive |
|-----------------------------|----------------------------------------------------------------|---------------------------------------------------------|
| Test on virtual environment | can be automated, easy<br>to integrate in existing<br>workflow | non exhaustive, biased towards success                  |

And more (fuzzing...)











#### Tests alone are not enough!

| Claim                                                      | Discussion                                                                                                                                    |
|------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|
| "A car drove 5,472km, 99% in autonomous mode" <sup>1</sup> | If it translate to a failure rate, $10^{-2}$ , insufficient compared to requirements in other critical systems (about $10^{-8}$ in aerospace) |
| "Our test cases are<br>exhaustive"                         | Testing sets tend to be biased towards "normal" operation (accidents are rare) <sup>2</sup>                                                   |

- 1. https://www.wired.com/2015/04/delphi-autonomous-car-cross-country/
- $2. \ https://arstechnica.com/cars/2019/05/feds-autopilot-was-active-during-properties of the control of the c$











#### Introducing formal methods

- Studied in the academics since 1930 ( $\lambda-$ calculus, Church, Turing)
- Different techniques: abstract interpretation (Cousot and Cousot 1977), SAT/SMT (Davis and Putman 1960; Tinelli 2009), deductive verification (Coquand 1989), etc.
- Used in industrial settings such as aerospace, automated transports, energy to formally certify









#### **Key points**



Work on domains  $\mathcal D$  of inputs (global properties)

Answer is sound, formally guaranteed

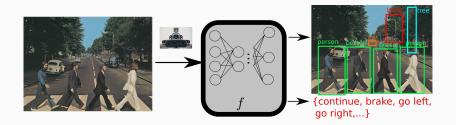










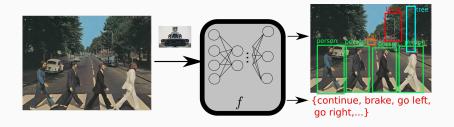












Dream property  $\phi$ : the autonomous car never roll over pedestrians

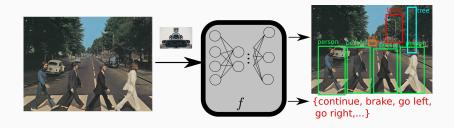












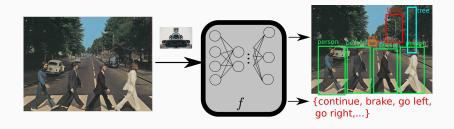
Dream property  $\phi$ : the autonomous car never roll over pedestrians no formal characterization of what a pedestrian is!











Dream property  $\phi$ : the autonomous car never roll over pedestrians no formal characterization of what a pedestrian is!

Lack of formal definition on inputs prevent from formulating interesting safety properties









### It's hard to use formal methods on deep learning

| Classical software          | Machine learning           |
|-----------------------------|----------------------------|
| Explicit control flow       | Generated control flow     |
| Explicit specifications     | Data-driven specifications |
|                             | (lack of generality)       |
| Abstractions and well known | Very few abstractions and  |
| concepts                    | reusability                |
| Documented and understood   | Flaws without systematic   |
| vulnerabilites              | characterization           |

Some differences between classical software and machine learning



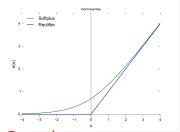








#### Another difficulty: performance of verification tools



Combinatory explosion (if done naively)









Deep learning verification: a

review

#### Local properties: adversarial robustness

For a given input x, a classification function f, an adversarial perturbation  $\delta$ :

find delta satisfying

classifier misclassification

such that

perturbation stays below a certain threshold











#### Local properties: adversarial robustness

For a given input x, a classification function f, an adversarial perturbation  $\delta$ :

find delta satisfying

$$f(x) \neq f(x+\delta)$$

such that



 $\|\delta\|_{p} \leq \varepsilon$ 

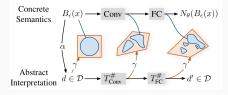






#### DiffAI/DeepPoly (Gehr et al. 2018, Singh et al. 2019)

- 1. abstract the network
- 2. propagate perturbations
- assess robustness properties
- 4. *learn to minimize* adversarial loss



Improve adversarial robustness on 100 samples from CIFAR-10 from 0 to 80%,  $\varepsilon=8/255$ , 3 hidden layers, convolutional network



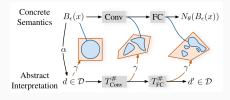






### DiffAI/DeepPoly (Gehr et al. 2018, Singh et al. 2019)

- 1. abstract the network
- 2. propagate perturbations
- assess robustness properties
- 4. *learn to minimize* adversarial loss



Improve adversarial robustness on 100 samples from CIFAR-10 from 0 to 80%,  $\varepsilon=8/255$ , 3 hidden layers, convolutional network

# Scalable verification, but local properties

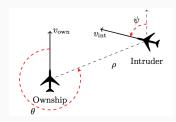








#### Global properties: ACAS-Xu



If the intruder is distant and is significantly slower than the ownship, the score of a COC advisory will always be below a certain fixed threshold. Bounds:  $\rho \geq 55947.691$ ,  $v_{own} \geq 1145$ ,  $v_{int} \leq 60$ 

Critical system



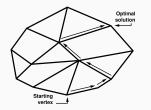








#### ReLuPlex and Marabou (Katz et al. 2017, Katz et al. 2019)



Core of most SMT solvers working with number values

Modified to lazily evaluate ReLUs

Exact verification of several properties on a ACAS-Xu implementation

Global properties



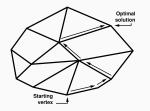








#### ReLuPlex and Marabou (Katz et al. 2017, Katz et al. 2019)



Core of most SMT solvers working with number values

Modified to lazily evaluate ReLUs

Exact verification of several properties on a ACAS-Xu implementation

## Global properties

Prior *model* for the inputs, assuming the detection is perfect. How do we verify perception? What is an intruder?











Verification of perception models

trained with simulators

#### **Example of simulator**

Industry rely more and more on simulators to generate scenarios to train and evaluate deep learning models



Screenshot from the CARLA open source simulator



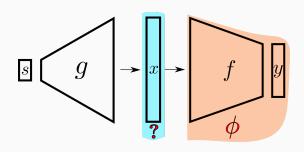








#### Simulators as data providers



- s : parameters (obstacles, weather conditions. . .)
- g : simulator
- φ : "∀ x that contains a pedestrian, do not roll over it"

x : perceptual input (images)

• *f* : model

• y : decision output (brake. . .)

How to formulate  $\phi$ ? What is a pedestrian in x?



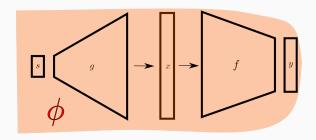








#### Reformulation of our verification problem



Modify the verification problem formulation to include g and s  $\phi$  now encompass s and can now be expressed : For certain values of s that can be translated by g as the presence of pedestrians into x, do not run over pedestrians

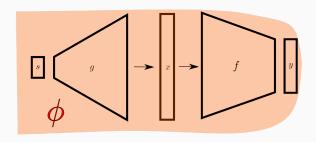








#### Reformulation of our verification problem



Modify the verification problem formulation to include g and s

 $\phi$  now encompass s and can now be expressed : For certain values of s that can be translated by g as the presence of pedestrians into x, do not run over pedestrians

We now have a property to verify a perceptive unit!



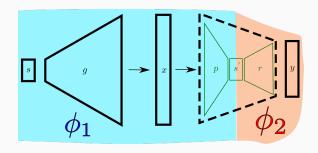








#### Refinement: splitting perception and reasoning



f split in perception and reasoning, p learns s

 $\phi_1$  on p : guarantee of no information loss : reconstruct s from x s  $^{'}=$  s  $\forall$  s  $\rightarrow$  p  $\circ$  g = Id

 $\phi_2$  on  $\emph{r}$  : do not kill pedestrians (assuming perfect perception)



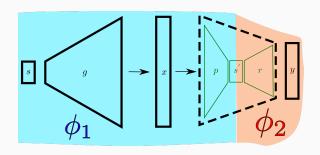








#### Refinement: splitting perception and reasoning



f split in perception and reasoning, p learns s

 $\phi_1$  on p : guarantee of controlled information loss : reconstruct s from x s'  $\simeq$  s  $\forall$  s  $\rightarrow$  p  $\circ$  g - id <  $\varepsilon$ 

 $\phi_2$  on r : do not kill pedestrians (assuming perfect perception)











#### How to achieve that concretely?

How to express  $\phi$ , g, f,  $\mathcal{X}$ ,  $\mathcal{Y}$ ,  $\mathcal{S}$ ?











#### How to achieve that concretely?

How to express  $\phi$ , g, f,  $\mathcal{X}$ ,  $\mathcal{Y}$ ,  $\mathcal{S}$ ?



SMT-LIB
THE SATISFIABILITY MODULO THEORIES LIBRARY

SMTLIB: Tinelli et al., 2017, https://onnx.ai/



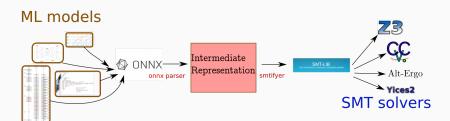








#### Toolkit to translate deep neural networks into SMTLIB



High-level workflow











Proof of concept and future works

# Synthetic experiment : a simple self driving car perceptive unit

Train a simple model to output a single command directive if a simplified input is in a pre-defined danger zone











#### Synthetic experiment: a simple self driving car perceptive unit

Train a simple model to output a single command directive if a simplified input is in a pre-defined danger zone

$$(x_1, x_2 \dots, x_n)$$
 output scalar (obstacle detected if  $> 0$ ) y

Network has 16 neurons, 2 hidden layers











# Synthetic experiment : a simple self driving car perceptive unit

Train a simple model to output a single command directive if a simplified input is in a pre-defined danger zone

$$(x_1, x_2, \dots, x_n)$$
obstacle
position
 $x$ 

output scalar (obstacle detected if > 0)

y

Network has 16 neurons, 2 hidden layers

We prove the given trained network will never fail











#### Translation of model

```
:: Inputs can be only between 0 and 1
(assert (or (= actual_input0000 0) (= actual_input0000 1.)))
(assert (or (= actual input0001 0) (= actual input0001 1.)))
(assert (or (= actual_input0002 0) (= actual_input0002 1.)))
(assert (or (= actual input0003 0) (= actual input0003 1.)))
:: There is at least one input within the danger zone (pixels from 35)
;; that is equal to 1
(assert
   (or
        (or (= actual input0035 1.)
        (= actual input0036 1.))
        (or (= actual input0037 1.)
        (= actual input0038 1.))
;; Formulate constraint on outputs:
:: The output always fire higher than a
:: confidence value
;; Negation: the output fire lower than a confidence value
(declare-fun confidence () Real)
(assert (= confidence 0.2))
(assert (< |y out 0 0| confidence))
```

#### Property formulation for 9x9 input size

```
(declare-fum |_1.weigh18 () Real)
(ssert (= 1.1.weigh18 () (-1)947381) 1208925819614629174706176)))
(declare-fum |_1.weigh18 (/ (-1)45997) 2251799813685248)))
(declare-fum |_1.weigh137 () Real)
(declare-fum |_1.weigh136 () Real)
```

Part of the network's translation











#### Translation of model

```
:: Inputs can be only between 0 and 1
(assert (or (= actual_input0000 0) (= actual_input0000 1.)))
(assert (or (= actual input0001 0) (= actual input0001 1.)))
(assert (or (= actual_input0002 0) (= actual_input0002 1.)))
(assert (or (= actual input0003 0) (= actual input0003 1.)))
:: There is at least one input within the danger zone (pixels from 35)
;; that is equal to 1
(assert
        (or (= actual input0035 1.)
        (= actual input0036 1.))
        (or (= actual input0037 1.)
        (= actual input0038 1.))
;; Formulate constraint on outputs:
:: The output always fire higher than a
:: confidence value
;; Negation: the output fire lower than a confidence value
(declare-fun confidence () Real)
(assert (= confidence 0.2))
(assert (< |y out 0 0| confidence))
```

```
{sssert (= \_1. weight38 (/ (- 13447381) 1208925819614629174706176)))

{declare-fun | _1. weight37 () Real)

{assert (= \_1. weight37 (/ (- 405697 ) 2251799813685248)))

{declare-fun | _1. weight36 () Real)
```

Part of the network's translation

(declare-fun | 1.weight38 () Real)

Property formulation for 9x9 input size

Problem solved with mainstream SMT solvers











#### Future work

- 1. Include noise and incomplete reconstruction in the framework
- 2. Add rewriting rules
- 3. Release and enhance the toolkit
- 4. Add a systematic representation of the simulator
- 5. Integration of state-of-the art verification tools











#### Questions?

## Any questions?









