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Introduction to Mean Field Games (MFGs)

▶ Definition:
▶ MFGs: model strategic interactions

among high number of agents.
▶ Each individual agent negligible influence.
▶ Collective behavior: represented through a

mean field term, summarizing their
aggregated effect.

▶ Generalization of the law of large
numbers, allowing for the study of
equilibrium dynamics in large-scale
multi-agent systems.

▶ Applications: economic modeling (Bassière
et al., 2024), finance (Lavigne and Tankov,
2023; Carmona et al., 2013), and energy
storage (Alasseur et al., 2020).
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Reinforcement Learning (RL) in MFGs

Objective: Use RL techniques to find equilibria in MFGs without explicit
knowledge of the system’s dynamics.

Setting: finite state and action spaces.

Challenges:

▶ Non-linear nature of the problem, adding significant complexity to the
analysis.

▶ Ill-conditioned fixed-point solutions, leading to potential numerical
instability.

▶ Ensuring the convergence of the proposed methods, particularly in
high-dimensional settings.
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Introduction to Reinforcement Learning (RL)

Definition: RL involves an agent learning to make decisions by interacting with
an environment to maximize cumulative rewards.

Agent

Environment

Reward rtState st Action at
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Introduction to Reinforcement Learning (RL)

Definition: RL involves an agent learning to make decisions by interacting with
an environment to maximize cumulative rewards.

▶ Agent: The learner or decision-maker.

▶ Environment: The external system the
agent interacts with.

▶ Actions: The set of choices available to
the agent.

▶ States: The situations or contexts in which
the agent finds itself.

▶ Rewards: Feedback provided by the
environment as a result of the agent’s
actions.

Agent

Environment

Reward rtState st Action at

max
π

E

[
∞∑
t=1

γtr(at , st)

∣∣∣∣∣s0 ∼ ξ, at ∼ π(·|st), st+1 ∼ P(·|at , st)

]
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Multi-Agent Reinforcement Learning (MARL)

MARL: Learning framework where
▶ Multiple Agents:

▶ Interact with each other and their environment.
▶ Aim to optimize their respective policies.
▶ Must account for the dynamic behavior of other agents, unlike single-agent

RL.
▶ Inter-agent interaction renders the learning environment non-stationary.

▶ Each agent i ∈ {1, . . . ,N} in MARL maximizes its own cumulative reward:

Ji (πi ) = E

[
∞∑
t=0

γtri (s
i
t , a

i
t , s

−i
t )

∣∣∣∣∣ait ∼ πi (·|s it)

]

▶ s it : The state of agent i at time t.
▶ ait : The action of agent i at time t.
▶ s−i

t : The states of all other agents except i at time t.
▶ γ: The discount factor (0 ≤ γ ≤ 1).
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Nash Equilibrium in MARL Systems

Definition: A Nash equilibrium in a MARL
system is a strategy profile (π∗

1 , . . . , π
∗
N) and a

space configuration (s∗1 , . . . , s
∗
N) where no agent

has an incentive to unilaterally deviate:

Ji (s
∗
i , π

∗
i , s

∗
−i ) ≥ Ji (s

∗
i , πi , s

∗
−i ),

for any πi and i ∈ {1, . . . ,N}.

Problem: Exponential Complexity: Finding a
Nash equilibrium in an N-player game is
computationally hard as the strategy space
growing exponentially.
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From MARL to MFG

Motivation:

▶ Simplify the complexity of interacting agents.

▶ Address the non-stationarity of the learning procedure to enhance stability
and convergence.

Assumptions:
▶ Anonymity: Each agent interacts with the population as a whole rather

than individual agents.
▶ The influence of a single agent becomes negligible as the number of agents

N →∞.

▶ Homogeneity: All agents have similar objectives, dynamics, and rewards.
▶ Agents are considered exchangeable, leading to the assumption that their

policies can be symmetric.

Ji (πi ) = E

[
∞∑
t=0

γtri (s
i
t , a

i
t , s

−i
t )

]
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From MARL to MFG

Motivation:

▶ Simplify the complexity of interacting agents.

▶ Address the non-stationarity of the learning procedure to enhance stability
and convergence.

Assumptions:
▶ Anonymity: Each agent interacts with the population as a whole rather

than individual agents.
▶ The influence of a single agent becomes negligible as the number of agents

N →∞.

▶ Homogeneity: All agents have similar objectives, dynamics, and rewards.
▶ Agents are considered exchangeable, leading to the assumption that their

policies can be symmetric.

J

(
π, µ(N) =

1

N

N∑
j=1

δ
s
j
t
, ξ

)
= E

[
T∑
t=0

γtr

(
s it , a

i
t ,

1

N

N∑
j=1

δ
s
j
t

)∣∣∣∣∣s i0∼ξ, ait∼π(·|s it ),
s it+1∼P(·|s it ,a

i
t ,µ)

]

= ξ
(
I− Pπ

µ(N)

)−1

rπµ(N)
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Nash Equilibrium and Exploitability in MFG

Definition: A Mean-Field Nash Equilibrium (MFNE) is a couple (π⋆, µ⋆) where:

▶ Each agent chooses a strategy that maximizes their own utility, given the
average effect of all other agents, i .e.,

J(π⋆, µ⋆, µ⋆) = max
π

J(π, µ⋆, µ⋆) .

▶ The mean-field profile µ⋆ is stable for the optimal strategy π⋆ at a
macroscopic level, i .e.,

µ⋆ = µ⋆ Pπ⋆
µ⋆

.

Exploitability: measures of improvement of an agent by deviating unilaterally
from π, given the mean-field parameter as the stationary distribution λπ,µ.

ϕ(π, µ) :=max
π′

J
(
π′, λπ,µ, λπ,µ

)
− J (π, λπ,µ, λπ,µ) .

Definition: (π⋆, µ⋆) is an ε-MFNE, if its exploitability is bounded by ε, i .e.,

ϕ(π, µ) ≤ ε.
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Trust Region Policy Optimization (TRPO)

Key Insight:

▶ Trust Region Policy Optimization (TRPO) is a state-of-the-art
reinforcement learning algorithm that strikes a balance between stability and
exploration.

Advantages:

▶ Prevents drastic policy updates, ensuring stable learning.

▶ Leverages policy improvement guarantees, making it robust to policy
changes.

Our Goal:

▶ Adapt TRPO to the mean field setting.

▶ Analyze how much data (sample complexity) is needed to ensure
convergence to the Nash equilibrium.
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TRPO: Adaptive Trust Region Planning

Overview:
▶ TRPO: trust region planning algorithm with an adaptive proximity term.
▶ Despite the non-convexity we still have convergence guarantees: O(1/k)

Update Rule: TRPO iterates, for a fixed µ,

πk+1 ∈ argmax
π

〈
∇Jπk

µ , π − πk

〉
− η(k + 2)

(
I− γPπk

µ

)−1
DKL(π||πk).

TRPO(µ,K) Algorithm

1: Initialize: π0 uniform policy
2: for k ∈ [K ] do
3: J

πk
µ ← (I− γP

πk
µ )−1r

πk
η,µ Value function

4: for s ∈ S do
5: for a ∈ A do
6: q

πk
µ (s, a)← r

πk
η,µ(s, a) + γ

∑
s′ P(s

′|s, a, µ)Jπk
µ (s′)

Action-value function
7: end for

8: πk+1(a|s)←
πk (a|s) exp

(
1

η(k+2)

(
q
πk
µ (s,a)+λ log πk (a|s)

))
∑

a′∈A

πk (a
′|s) exp

(
1

η(k+2)

(
q
πk
µ (s,a′)+λ log πk (a

′|s)
))

Policy Update
9: end for

10: end for
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MF-TRPO

Tabular TRPO for MFG Algorithm

1: Initialize: Initial distribution µ0 = U(S), initial policy π0,0 = U(A).
2: for p ∈ [P] do
3: Initialize: Initial policy πp+1,0 = πp,K .
4: for k ∈ [K ] do

5: J
πp+1,k
µp ←

(
I− γP

πp+1,k
µp

)−1
r
πp+1,k
η,µp Value function

6: for s ∈ S do
7: for a ∈ A do
8: q

πp+1,k
µp (s, a)← r

πp+1,k
η,µp (s, a) + γ

∑
s′ P(s

′|s, a, µp)J
πp+1,k
µp (s′)

Action-value function
9: end for

10: πp+1,k+1(a|s)←
πp+1,k (a|s) exp

(
1

η(k+2)

(
q
πp+1,k
µp (s,a)+λ log πp+1,k (a|s)

))
∑

a′∈A

πp+1,k (a
′|s) exp

(
1

η(k+2)

(
q
πp+1,k
µp (s,a′)+λ log πp+1,k (a

′|s)
))

Policy Update
11: end for
12: end for

13: µp+1 ← µp−1 + βp

(
µp−1

(
P
πp+1,K
µp−1

)M
− µp−1

)
Update population

14: end for
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Bound for the exact algorithm

Convergence bound of Tabular TRPO for MFG

Let {µp}p≥0 and {πp,k}p,k≥0 be the sequence generated by Tabular

TRPO for MFG. Then, under some assumptions (which implies the unique-
ness of the MFNE (π⋆, µ⋆)). for some C , τ > 0, we have that

max
π

J(π, µp, µp)− J(πp,K , µp, µp) ≤
C logK

K
, for p ∈ [P],

∥µP − µ⋆∥2 ≤ exp

(
−τ

2

P∑
j=1

βj

)
∥µ0 − µ⋆∥2 +

C logK

K
.

Moreover, (πP+1,K , µP) is εP -MFNE, with

εP = C exp

(
−τ

4

P∑
j=1

βj

)
+ C

√
log(K)

K
.
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Crowd Modeling: Four Rooms Environment

▶ Environment: two-dimensional grid divided into four interconnected rooms.

▶ Agents move through narrow passageways between rooms.

▶ The reward function discourages overcrowding:

r(s, a, µ) = −K log(µ(s)) + Γ(a),

with

Γ(a) =

{
0.2 if a = 0 (Stay)

−0.2 if a ∈ {Left,Right,Up,Down} (Move)
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Performance Evaluation: Exploitability Metric

Measure of the performance of the learned policy:

▶ Exploitability: it quantifies the deviation from a Nash equilibrium by
measuring the best possible improvement for any agent:

ϕ(π) = max
π′

J(π′, µπ)− J(π, µπ).

▶ Quality: Evaluates how well a given policy performs under a fixed
population distribution:

T (π, µ) = max
π′

J(π′, µ)− J(π, µ).

▶ Mean-field distribution convergence: increments in the mean-field
distribution parameter between consecutive iterations.

We benchmark our approach against Fictitious Play (Perrin et al., 2020) and
Online Mirror Descent (Pérolat et al., 2022).
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Performance Evaluation: Exploitability Metric
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Questions

Menù del giorno

▶ Introduction to MFGs and RL

▶ From MARL to MFGs

▶ Problem Setting and MF-TRPO

▶ Algorithm and “Results”

▶ Visualizations

Future perspectives

▶ The non-stationary case

▶ Mean field control

▶ Continuous-time version of the algorithm

▶ Robust version of the algorithm
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