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Introduction
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Climate strongly impacts energy consumption.

Identifying different possible climate scenarios can be instrumental to 
understand how the electric network would respond to variations in the weather. 

RTE gets simulated time series of temperatures over a grid of geographical 
points in France and neighboring areas. 



Objectives
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1. Cluster climate scenarios

2. Evaluate and interpret the clustering

3. Give  representatives and define the notion of quantiles

4. Get insights on the dynamics of the scenarios
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Data
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Dimension = 71 x 51 x 8760

For points in a grid of 71 x 51, we have the temperature of 
every point every for 200 years every hour.

The simulation of 200 years are not forecasts. 

They are built to represent the climate of the 1984-2013 
period, based on the model Arpege Climat 6.0 and Hirlam 
reanalysis 



Clustering ingredients
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1. Choosing a transformation on the data space possibly reducing the 
dimension,  and defining the feature space,

2. Choosing a distance on the feature space,

3. Choosing a clustering algorithm on the feature space.

4. Choosing a distance in the original space and associated criteria to 
possibly choose between different algorithms using the performances of 
these criteria.



Clustering tradeoffs
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1. Choosing a transformation → fight dimensionality and concentration of 
distances

2. Choosing a distance on the feature space
 → Right representation for scenarios differences
 → Clustering efficiency 

For the clustering to make sense, a non-trivial tradeoff must be found 
between distance information, dimensionality reduction and clustering 
efficiency



Towards Deep Clustering
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Optimize the two 
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Highlights
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1. Choice of the distance/transformation

2. Time vs space

3. Definition of a clustering index



Distances/transformations

Dimension reduction

Fourier
Wavelets
PCA
kernel PCA

Embeddings (autoencoder)

Distance

L2

MLCC

DTW
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The Max Lagged Cross Correlation 
(Max CC) distance looks for an 
optimal alignment between two 
signals, with the two series only 
being allowed to be aligned via 
shifts in the time axis.

Max Lagged Cross Correlation 

[Paparrizos and Gravano 2016]

Max CC takes into account the dynamic nature of the data, the fact that we are 
dealing with time series, which by their very definition can have lagged relations.



Dynamic Time Warping
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Dynamic Time Warping (DTW) looks for the 
optimal alignment between two time series. 
Like the Max Lagged CC Distance, DTW takes 
into account the dynamic nature of the data. 
Unlike Max Lagged CC Distance, DTW allows 
for non-linear alignments of the series and is 
more computationally demanding.

[Berndt and Clifford 1994]
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https://plot.ly/~aumfurer/2/closest/#/
Interactive visualization:

https://plot.ly/~aumfurer/4/farthest/#/

https://plot.ly/~aumfurer/2/closest/#/
https://plot.ly/~aumfurer/4/farthest/#/
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Examples of  clustering pipeline

Example 1: 

Transformation:  wavelet basis + thresholding
Distance in feature space: L2 between the selected coefficients
Cost of dimension reduction: cost of reconstruction
Clustering: k-medoids

Example 2: 

Transformation:  none
Distance: DTW
Cost of dimension reduction: none
Clustering: k-medoids
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Meaning of the distances

Depending on the distance (filtering / dimension reduction) chosen,  
the variability of the data might be dominated either:

- by spatial characteristics (close points in space look alike)

- by time characteristics (series of the same year look alike)



Autoencoders
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TSNE projection (colored by years) TSNE projection (colored by geographics)

Embeddings of series of 100 geographical points for 5 scenarios

color code

Variability among years is stronger than among geographical points.



Experiments
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Data  
Select the temperature series of a geographical point and a year (reference series) and 
consider:

(a) The temperature series corresponding to the same geographical point in all the 
others scenarios (198 series)

(b) The temperature series corresponding to the same year but other geographical points 
(we set the number of geo points to be the same as scenarios: 198, although the number 
of geo points is around 3500)

Goal
We want to compare:

 the distribution of distances between the reference series and the series in group (a)  
versus

 the distribution of distances between the reference series and the series in group (b)  



Results

19Distances from reference series to group (a): 
One  Point, different years

Distances from reference series to group (b): 
Same Year, faraway points



Transition from mean to euclidean by Haar decomposition (series without z-normalization)
(Point near Alpes- year 2127)

haar_l0

haar_l11



mean                   Euclidean                                        

haar 
fourier

SPACE TIME

MLCC      
z-scored
DTW                           DTW                           

Phase transition for distances
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How to find the dimensional tradeoff ? 

Suppose we can choose among a certain family of well chosen distances.

Given a subset of scenarios (for instance winters of given point), how to optimize the 
clustering efficiency without loosing meaningfulness?
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Clustering index

We propose a clustering index that helps to select a metric/dimension reduction

For d a given “metric”:

Index(d) = F(d) * Q(d) 

F stands for fidelity and Q for cluster quality
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Q(d): clustering quality index

We decide to use one minus within index as a measure of the quality of the clusters. That is :   

Q(d) =  1 - within index (d)

Notice that 0<= within index <=1 and therefore 0<=Q(d) <=1.  The best within index is 0 and so the best Q(d) 
is 1. 

Within Index: Ratio between the average distance from each point to its center and the average distance 
between points.

where          are the data points, n is the number of data points and        is the center of the 
cluster associated to 

Within index (d) = 

! This index benefits k-means over k-medoids.
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F(d): fidelity index

How to construct a measure of deformation from the original space with distance D to 
the feature space with distance d?

We want an index that gives 1 to 0 deformation and 0 to huge deformations.
(We do not have necessarily a notion of reconstruction or decoder)



   

26

F(d): fidelity index

In order to be able to evaluate the fidelity of the representation of the data, a reference metric D is 
set. We want to evaluate how well the distances d preserve D. 

We use the T-SNE Stochastic embedding for the  original space and feature space:
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We define the distance between our evaluation distribution P and our reference distribution Q, as the 
symmetrized Kullback-Leibler (called Jensen–Shannon divergence):

DJS (P, Q) = DKL(P||Q)/2 + DKL(Q||P)/2 

Since this metric gives a value between 0 and infinite, we will use a logistic function to limit it to the 
interval [0, 1)

then our Fidelity function F(d) is defined as:

where 
beta = 2 x sigma, where sigma is the standard deviation of the DJS values for all the considered 
models {d}.
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About RTE Data

We considered the times series corresponding to 199 winter scenarios for one geographical point 
(next to Paris location: lat long 48.8°, 2.3°). 

For each of the 199 times series we considered 2048 winter hours (aprox 85 winter days). The length 
of the series was chosen to be a power of 2, which simplifies the wavelets decomposition. 
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Models

Representation of the data Distance Number of clusters Clustering method Name
Plain time series euclidean range from 5 to 22 k-medoids L2
PCA 95% euclidean range from 5 to 22 k-medoids PCA95
Fourier 95% euclidean range from 5 to 22 k-medoids Fourier95
Haar 95% euclidean range from 5 to 22 k-medoids Haar95
Plain time series euclidean range from 5 to 22 k-medoids mean
z-normalized time series DTW range from 5 to 22 k-medoids DTW

z-normalized time series max lag cc range from 5 to 22 k-means MLCC
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Results on RTE 

Q(d) =  1 - within index (d)
(best = 1)

Each point in the plot is the mean 
value of 25 independent runs of the 
clustering algorithm (the same with the 
following plots).
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Results on RTE

L2 as reference metric DTW as reference metric MLCC as reference metric
Best: Fourier 0.95
2best: Haar 0.95

Best: DTW
2best: MLCC
3 best: fourier 0.95

Best: MLCC
2best: Fourier 0.95

Index = F(d) * Q(d)

Remember that each point is the mean of 25 independent runs
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Lagged series

Original series

MLCC results - 1 week
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MLCC results
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Experiments on UCR data set

The UCR series datasets is a set of labeled temporal series datasets.

In order to evaluate our metric we will compare the distance chosen by our index with the one selected 
using the accuracy.
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Statistics over UCR

Metric with best accuracy Number of 
data sets

Reference metric for our 
index

proportion of datasets where our index 
selects the metric with best accuracy

MLCC 27 MLCC 23/27 = 0.852

MLCC 27 DTW 12/27 = 0.444

MLCC 27 l2 17/27 = 0.63

DTW 38 MLCC 3/38 = 0.078

DTW 38 DTW 15/38 = 0.395

DTW 38 l2 3/38 = 0.079

other (haar95, fourier95, 
PCA95, l2)

34 MLCC 1/34 = 0.029

other (haar95, fourier95, 
PCA95, l2)

34 DTW 2/34 = 0.059

other (haar95, fourier95, 
PCA95, l2)

34 l2 3/34 = 0.088
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Notion of quantile

We aim at a definition of quantiles for the  whole serie (not for marginals).

Several definitions in the literature:
For instance:

Daniel Peña, Ruey S. Tsay & Ruben Zamar (2019): Empirical
Dynamic Quantiles for Visualization of High-Dimensional Time Series, Technometrics, 2019.

Chernozhukov, V., Galichon, A., Hallin, M., & Henry, M. (2017). Monge–
Kantorovich depth, quantiles, ranks and signs. The Annals of Statistics , 45(1),
223-256.

Gouriéroux, C., & Jasiak, J. (2008). Dynamic quantile models. Journal of
Econometrics , 147(1), 198-205.Hallin, M., Paindaveine, D., Šiman, M., Wei, Y., Serfling, R., Zuo, Y., ... & 
Mizera,

I. (2010). Multivariate Quantiles and Multiple-Output Regression Quantiles: From
L1 Optimization to Halfspace Depth.[with Discussion and Rejoinder]. The Annals
of Statistics , 635-703.
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Our proposal (work in progress)

Can we define a notion of quantile (or tube around a serie) using wavelet coefficients?

Practical algorithm (for a fixed quantile  a):

1. Compute  the  wavelet coefficients (in your favorite base) of all series

2.  Define the estimators for the mean coefficients beta and variance (obvious way)

3. Threshold the coefficients
 First keep 95% variability,
 then adjust to be at “small enough” distance to one of the data curves depending on the variance

4. Using a constant L(a,n,thresholding), define the tube around the function: 
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Some theoretical backup

In the case of a (simplistic) model:

with f with some regularity, and the noise Gaussian i.i.d.

Then we get results of the type:

Theorem

+ Regularity of noise 
+ Regularity of f (in functional space) 
+ Right scaling of tube and thresholding implies
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THANKS


