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1 Context “big data”

More samples Higher dimensional Observational

Missing data is central to “big data”
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1 Context: big data in health and social sciences
More and more missing data due to:
- high dimensionality (one feature may be missing)
- difficulty of fine control on the acquisition process

Causal conclusions from analysis challenging:
- observational data (as opposed to experiments)
- missing data induces selection biases

New data sources challenge missing-data methodology:
high-dimensional
observational
uncontrolled confounds
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1 Motivating data in health
Traumabase: 15 000 patients/ 250 var/ 15 hospitals

Center Age Sex Weight Height BMI T◦ Lactates Glasgow Transfusion
Beaujon 54 m 85 NR NR 35.6 NA 12 yes

Lille 33 m 80 1.8 24.69 36.5 4.8 15 no
Pitie 26 m NR NR NR 36 3.9 3 no

Beaujon 63 m 80 1.8 24.69 36.7 1.66 15 yes
Pitie 30 w NR NR NR 36.6 NM 15 yes

- missing: Not Recorded, Made, Applicable, etc.
- predict the Glasgow score, start of a transfusion
- study the effect of a treatment on survival

UK Biobank: prospective epidemiology
- 1 Million patients of a normal aging population
- 10% have medical imaging data
- observational data to study risk factors
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1 State of the art to handle missing values
Single imputation: complete the data
⇒ Need to reflect the uncertainty in the analyses

Multiple imputation: generate different imputed data
and apply the analysis on each imputed data
⇒ Impute by approximating the joint distribution

Solutions: SVD (+bootstrap)
[Josse... 2016]

Nonparametric Bayes

Benefits: low-rank [Udell, 2017] flexible
Drawbacks: struggle with com-

plex relationships
do not scale
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1 Missing value mechanisms

missing at random everywhere MCAR
missing at random on certain variables MCAR
(Missingness on X1) ⊥⊥ X1|Xi 6=1

⇒ max likelihood imputation unbiased
missingness not independent of data MNAR

non-ignorable pattern

Age Height T◦ Glasgow score
26 1.84 36.0 3
16 1.92 37.5 4
54 1.6 35.6 10
33 1.69 36.0 5
63 1.8 36.7 12
33 1.73 36.5 15
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1 Missing value mechanisms
missing at random everywhere MCAR

Easily unbiased

missing at random on certain variables MCAR
(Missingness on X1) ⊥⊥ X1|Xi 6=1

⇒ max likelihood imputation unbiased
missingness not independent of data MNAR

non-ignorable pattern

Age Height T◦ Glasgow score
26 NA 36.0 3

NA 1.92 37.5 4
54 1.6 35.6 10
33 1.69 NA 5

NA 1.8 36.7 12
33 1.73 NA 15

MissingBigData 6



1 Missing value mechanisms
missing at random everywhere MCAR
missing at random on certain variables MCAR
(Missingness on X1) ⊥⊥ X1|Xi 6=1

⇒ max likelihood imputation unbiased

missingness not independent of data MNAR
non-ignorable pattern

Age Height T◦ Glasgow score
26 1.84 36.0 3
16 1.92 NA 4
54 1.6 35.6 10
33 1.69 NA 5
63 1.8 36.7 12
33 1.73 NA 15

MissingBigData 6



1 Missing value mechanisms
missing at random everywhere MCAR
missing at random on certain variables MCAR
(Missingness on X1) ⊥⊥ X1|Xi 6=1

⇒ max likelihood imputation unbiased
missingness not independent of data MNAR

non-ignorable pattern
Age Height T◦ Glasgow score

26 1.84 NA ← 3
16 1.92 NA ← 4
54 1.6 35.6 10
33 1.69 NA ← 5
63 1.8 36.7 12
33 1.73 36.5 15
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1 Missing not at random and causal interpretation
Missingness depends on the underlying value (eg income)
- problem: selection bias
- solution: model for the missing values mechanism
- state of the art: only 1 variable with missing values

Graphical models for missing values [Pearl 2018]
- Explicit distribution (X ,RX )
- Ex: Y years of work experience, I income
Y → I → RI but P(Y |I) may be recovered

⇒ Powerful models
to capture interactions between variables
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1 Objectives of the MissingBigData project

Broad models: avoid underfitting but also scalable

Modeling the dependency structure in missingness
across covariates (not at random)

Control possible biases (non ignorable missingness)

Enable statistical analysis
⇒ Combining predictive models with causal inference
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1 Ongoing: causal conclusions with missing values
Causal conclusions:
Y outcome, X covariates, W treatment 0 or 1
Average Treatment Effect τ = E [Yi(1)− Yi(0)]

- experimental design:Ȳ1 − Ȳ0
- observational data: adjust for the covariate

Unconfoundness: (Yi ⊥⊥ Wi |Xi)

Inverse probability weighting — “Doubly robusts”

Estimates weights: e(x) = P(Wi = 1|X = x)
Average Treatment Effect τ̂ = 1

n
∑

i

(
WiYi
ê(Xi ) −

(1−Wi )Yi
1−ê(Xi )

)
⇒ Random Forests with missing values
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2 Random forests with missing
values
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2 Random forest: constructing the trees

A split point s1 is selected at each iteration.

The average of Y in each leaf is the prediction.
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2 Random forest: constructing the trees

A split point s1 is selected at each iteration.
The average of Y in each leaf is the prediction.

⇒ How to split?
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2 How to split? Two classic strategies
”Classic” CART

Exhaustive search
Impurity of a node:

I =
∑

(Yi − Y )2

Conditional trees
[Hothorn... 2006]

Variable choice:

T (Xj) =
∑

X j
i Yi

Threshold choice:
impurity

Splitting criterion:

C(Xj) = I − Ibest
L − Ibest

R

Splitting criterion:

C(Xj) ∝ T (Xj)

With missing values: sums over available points.
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2 Choice of splitting variable
Balanced setting Y = X1 + X2 + ε.
The ratio C(X1)/C(X2) should be close to 1.

Missing at random on all variables
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2 Choice of splitting variable
Balanced setting Y = X1 + X2 + ε.
The ratio C(X1)/C(X2) should be close to 1.

Missing on X1 depending on the value of Y
⇒ Conditional trees show negligible bias.
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2 Prediction error
Same setting: Y = X1 + X2 + ε.
Metric: systematic bias on the prediction of Y .
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Context Random forests with missing values References

2 Conclusion on random forest with missing data

Inference 6= prediction.
Conditional trees correct the bias in inference of
parameters.
CART is more robust in prediction than in
inference.
Prediction seems easier and more useful to us.
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Missing data is ubiquitus in big data
Dependence between missingness & effect breaks analysis

⇒ Models that capture dependences

Compensating biases
Missingness can appear as selection bias:

causal literature
Modeling of missingness to correct causal interpretations
Inverse probability weighting: prediction problem

Random forests with missing data
Uncontrolled variance in split criteria biases selections
Prediction is more robust
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