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Comparing brains with artificial neural networks

As models of the brain, current artificial neural networks are quite good at
- Capturing how synaptic changes can leading to sophisticated learning
- Modelling the early stages of vision

- Modelling some aspects of language processing

The human brain keeps the upper hand in its ability to

* |learn from a very small number of examples, sometimes a single trial,
using Bayesian-style reasoning (“the child as a scientist”);

» discover compact, abstract, symbolic, explicit representations of
knowledge

* in a form which can be shared with others
e |earn from others and learn with others

* |earn compositional representations in a “language of thought”.
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The main dogma of neuroscience: we learn by modifying synapses
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Many experiments show that learning rests primarily on the reinforcement and
selective elimination of synapses, which form a memory trace of our experiences

and affect the tuning of our neurons.
Neuronal activity (or its absence) selectively modulate synapse stability.
Synapses can rearrange on a fast time scale: dendritic spines come and go !

Learning also rests on changes in axonal branching, myelination, and even cell internal
parameter changes (e.g. Hesslow’s work in Purkinje cells)




To learn
is

to adjust the millions of
synapses that allow each
neuron to « tune in » to a
relevant aspect of the
stimulus
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Artificial neural networks are beginning to capture
the first stages of the hierarchy of primate visual areas

Higher Level

Lower Level

Eickenberg, M., Gramfort, A., Varoquaux, G., & Thirion, B. (2017). Seeing it all : Convolutional network layers map the function of the
human visual system. Neurolmage, 152, 184-194. https://doi.org/10.1016/j.neuroimage.2016.10.001

Yamins, D. L., Hong, H., Cadieu, C. F., Solomon, E. A,, Seibert, D., & DiCarlo, J. J. (2014). Performance-optimized hierarchical models
predict neural responses in higher visual cortex. PNAS, 111(23), 8619-8624.



The principal components of AlexNet explain the topography of monkey IT cortex

Bao, P, She, L., McGill, M., & Tsao, D. Y. (2020). A map of object space in primate inferotemporal cortex. Nature, 1-6.
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Within the face patches, the principal PC1
components of faces can explain the
responses of single-neurons : each neuron is

tuned to a small set of PCs.

- Perhaps the cortex performs principal
componant analysis at multiple scales.



Recurrent neural networks explain the dynamics of brain activity during object recognition

Kietzmann, T. C., Spoerer, C. J., Sorensen, L. K. A., Cichy, R. M., Hauk, O., & Kriegeskorte, N. (2019). Recurrence is req -~
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to capture the representational dynamics of the human visual system. Proceedings of the National Academy of Sciel Huiian o
116(43), 21854-21863. https://doi.org/10.1073/pnas. 1905544116 consistency
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The « little prince » project

Christophe Pallier, Alexandre Pasquiou, with Bertrand Thirion et al.

To what extent can the same trick be applied to language processing?

Idea: generate a reference data set that can be compared to various models of language
processing.

- fMRI data on more than a hundred subjects listening to the entire « Petit Prince » in English,
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The « Iittle prince » project BERT shows a significant advantage in the

prediction of higher-level language areas
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How does a recurrent neural network encode syntax ?

Lakretz, Y., Kruszewski, G., Desbordes, T., Hupkes, D., Dehaene, S., & Baroni, M. (2019).
The emergence of number and syntax units in LSTM language models. NAACL-2019.

We analyzed a state-of-the-art long-short-term memory (LSTM)
artificial network, trained to predict the next word in the Wikipedia
English corpus (classical « Language model »).
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We test the network with a long-distance
agreement task:

e.g. « The keys to the cabinet are blue »
« The_cars that pass the truck are blue »

This task requires encoding

1. grammatical number information

2. enough syntactic structure to skip over
intervening items (prepositional phrases,
relatives, etc)

—> Capture long-range syntactic dependencies

LSTM networks do relatively well in such tasks
(Linzen et al., 2016; Gulordava et al., 2018)

but how?



Brain activity closely tracks phrase structures

fMRI: Intracranial recordings:
Monotonic increase Monotonic increase with sentence length,
with constituent size and tracking of constituent size
(Pallier, Devauchelle & Dehaene, 2011) (Nelson... and Dehaene, PNAS, 2017)
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Number of units

Identifying syntax units 5| Prepositional phrase

Number of ablated units: k = 17
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Identifying number units
(singular vs plural)

Step 1. Find units whose activity decodes singular vs plural.

Several units encode the number of the current noun.
Most generalize over time, but only over a short period,
and they refresh when a new noun is presented.

Two units, however, show sustained number coding.
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Step 3. Physiology. Those two units memorize the past
number information, across intermediate words.
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Lakretz, Y., Kruszewski, G., Desbordes, T., Hupkes, D., Dehaene, S., & Baroni, M. (2019). The emergence of number and syntax units in LSTM language models. NAACL-2019.



The LSTM language model is structure-sensitive, but not recursive

Lakretz, Y., Hupkes, D., Vergallito, A., Marelli, M., Baroni, M., & Dehaene, S. (2020). Exploring Processing of Nested Dependencies in Neural-Network Language Models and Humans. arXiv
e . 1 M |
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A hypothesis: The singularity of the human brain
may lie in the ability to construct nested symbolic tree-like representations

\
Dehaene, S., Meyniel, F., Wacongne, C., ﬁ’ observed
Wang, L., & Pallier, C. (2015). The B
Neural Representation of Sequences: Transitions and timing ob At Jj At Jj At ob At predicted
From Transition Probabilities to SRS
Algebraic Patterns and Linguistic Trees. time
Neuron, 88(1), 2-19.
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SRR Nested symbolic structures DP reverse
Unique to humans? L —
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The role of a « language of thought » in human conceptual growth
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A simplified
“language of geometry”

Amalric, M., Wang, L., Pica, P., Figueira, S., Sigman, M., & Dehaene, S. (2017).

The language of geometry: Fast comprehension of geometrical primitives and Voici Bloup le poisson
. . . Observe ses déplacements
rules in human adults and preschoolers. PLoS Computational Biology, 13(1)

Subjects see a sequence and are asked to anticipate the next location.

A mini « language of geometry » captures the observed regularities.

Primitives Example 1: “four segments” Example 2: “two rectangles”
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Minimal description length
in our « language of geometry » predicts error rates

Amalric et al., PLoS Computational Biology 2017; Wang et al., Neuroimage 2019; Al Roumi et al. submitted

All sequences are of the same length (8 items).

What predicts memory is not actual length, but minimal
description length (a.k.a Kolmogorov complexity), the length of the
shortest expression that can compress the sequence.

Ongoing work by Liping Wang:

Monkeys do not seem to care
about temporal or geometrical
regularities. They simply store
each location in working memory,
without seeming caring for the
structure of their transitions.
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The same language is needed to account for auditory sequence complexity

Our language of geometry, unchanged, predicts the subjective
and objective complexity of a binary auditory sequence by its

« minimal description length ».

Planton et al., PLoS Computational Biology, in press
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Understanding the human sense of
geometrical patterns




How old is the sense of geometry?

Bifaces and spheres may be
1,8-2 million years old
(Homo ergaster or archaic erectus)




How do human and non-human primates perceive quadrilaterals?

Studies of quadrilaterals (Mathias Sablé-Meyer, ongoing PhD)

. N N

5 shapes are identical up to rotation and dilation

Participants are asked to locate the 6", deviant shape

\ d _




Does shape regularity predict perceptual complexity?

We used 11 quadrilaterals ranging from highly regular (square) to fully irregular

Deviants involve a

Rectangle Square Iso-Trapezoid Parallelogram
displacement of the
bottom right vertex.
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Rhombus Right Kite Kite Hinge <

Right Hinge Trapezoid Irregular
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Human adults: a major effect of shape regularity

m e
-w - ¢
N W

Performance is above chance for all shapes,
but varies from 7% to 42% errors.

Response time follows the same pattern.
The position, rotation and size of the outlier

have either no significant effect or significant
effects with almost no explained variance
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Is the shape regularity effect present in non-human primates?
A study in baboons (with Joél Fagot)

Prediction: baboons should fail to show the shape regularity effect Baboons were first trained to perform the outlier

task with simple pictures:

Following training, we tested generalization to novel
pictures, and onIy then to geometrical shapes.
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The shape regularity effect is absent in baboons

Pearson Correlation (r)
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Model 1: shape perception by a convolutional neural network (CNN)

*  We presented our stimuli to CoreNet-S, a model
5 trained to categorize natural images and which
provides a good match to human performance
E and inferotemporal neuronal recordings.
x1

* A similar experiment was done with two other
CNNs, DenseNet and ResNet, with similar
results
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Baboons

—Blocks 1-33 Model
—— Blocks 34 - 66
—Blocks 67 - 99 Humans (Exp.2)
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Model 2: A symbolic model with discrete geometrical properties

7= ? =|? H : : H
v=a? 7 | | V=2 The symbolic model lists the discrete properties of
L | | e .
List internal the shapes (within a certain tolerance level
— e ML, s 1, s 1,y 1, ] pes )
prop V * Equal angles
Compute L;-norm distance e Parallelisms

to predict complexity

* Equal lengths

[0, .., 0, ., 0, .., 1, ..] * Right angles

The ease of outlier detection is predicted by the
number of properties that differ.

This model nicely predicts the shape regularity effect:
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A double dissociation between
humans and baboons

In @ multiple regression, the neural-
network and symbolic models
capture respectively the baboon and
human data.

The symbolic model fails to predict of
the baboon data even at the
individual level

Himba and preschoolers rely on a
mixture of the two strategies



Could experience explain the
human pattern?

1. Trainingin a “carpentered world”? No

The baboons live a world which is arguably more
“carpentered” than the Himba, yet they have
opposite results.

2. Training with geometrical shapes ? No

- The baboons received thousands of training trials.

- We trained the network to label our geometrical

shapes with additional output units:

- Either all 11 shapes, or just the shapes with names

- Either by updating the entire network, or by
changing the last layer (IT only)

The network reaches perfect scores on novel displays

of those shapes, but predictions are unchanged.
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Generalization beyond the
quadrilaterals:

A generative language for
geometrical shapes

Goal: propose an actual programming language
that can account for the basic geometrical shapes
used in human cultures throughout the world.

The language contains a few key primitives:

- Number: 1,2,3, successor, half, double
- Geometry: Move, Turn Trace

- Control: Repeat, Concatenate, Embed

For instance a simple square is:

Repeat (4)
{ Concatenate ( Trace(1) , Turn(96°) }

Shape perception is program induction!



A prediction about shape complexity

Prediction: Shape complexity should be determined by the length of the shortest program capable of reproducing it.

Perceptually rich drawings can be generated by a single instruction: repeat, concat, or embed.

Complexity should follow additive rules:

We selected 5 base shapes with
increasing complexities

] O YA

o B

... and used them into programs:

oooao 000 SR T34 77 babab el al

Repeat

Complexity ( Repeat(x) ) = Complexity (x) + constant
Complexity ( Concat(x,y) )= Complexity ( x ) + Complexity (y ) + constant’
Complexity ( Embed(x,y) ) = Complexity ( x )+ Complexity (y ) + constant”
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Concatenate Embed




Two behavioral measures of shape complexity in humans
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Phase 1 : Encoding

Subjects press a bar, then lift it
when they feel they remember the pattern

measure = encoding time
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Phase 2: Multiple choice

Subjects select the previous pattern
among many mutants

measure = choice time (and errors)
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Testing the predicted additive
relationships

There is an effect of shape complexity even for
individual shapes = different “programs”

This effect predicts what happens in other conditions:

* Repetition of a shape n times
= addition of a term roughly proportional to log(n)

* Concatenation of two shapes

= addition of the two complexities
no interaction term, once we remove the special case
of two identical shapes

* Embedding of two shapes (e.g. a circle of squares)
= addition of the two complexities, with steeper
slopes
Again, no interaction term, but a special savings when
the same program is used twice (e.g. a circle of circles)



Conclusions

Humans, unlike other non-human primates, possess
mental programs in a language of thought that

- Discretizes concepts :
numbers, lines, lengths, angles

- Assigns them symbols that combine recursively

All human consider the same programs as simple
(because they are short) = cross-cultural
convergence towards the same math concepts.

Consequences for Al: we still do not have
satisfactory neural models of symbolic learning.
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