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Context-aware clustering

Lack of context-awareness: same variables, different goals.

Strategies :

• Variable selection: determine which features are relevant to each context.

• Feature weighting: assign different weights based on their importance to a context.

• Constraint-based clustering: ”these points must be in the same cluster”.

• Add a context variable: add an extra dimension that describes the context.
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Guiding variable

To respond to the problem, we want clusters that are generative of the input variables but
also a guiding variable y.

Figure: Illustration of the model. Diamond-shaped nodes denote latent variables, while round ones denote
observations.
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Generative model

• Choose a cluster c: pπ(c) = Cat(c;π).

• Generate a latent vector z conditioned on the cluster c: pµc,σc(z|c) = N (z;µc, σ
2
c I).

Figure: A graphical representation of the GMM.

Here π = (π1, ..., πK) ∈ [0, 1]K ,
∑K

c=1 πc = 1, µc and σ2
c the mean and the diagonal

covariance of the multivariate normal distribution corresponding to cluster c.
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Generative model

• Generate the variable x from the latent vector z: pθx(x|z) = N (x; fθx(z), I).

• Generate the variable y from the latent vector z: pθy(y|z) = N (y; fθy(z), I).

Figure: A graphical representation of the decoders.

Here I is the identity matrix, and fθa(z) with a ∈ {x, y} are networks with input z and
parametrized by θa.
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Variational inference

Figure: Illustration inspired by [Blei et al., ].

• Fit the variational parameters ϕ to be close in KL to the exact posterior.
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Inference model

• Mean-field approximation: qϕ(z, c|x) = qϕ(z|x)q(c|x), with

qϕ(z|x) = N (z; µ̃, σ̃2I)

[µ̃, log σ̃] = gϕ(x)

Figure: A graphical representation of the inference model.
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Objective

ELBO(x, y) = Eqϕ(z|x)[log pΘ(y|z)]︸ ︷︷ ︸
Reconstruction of y

+Eqϕ(z|x)[log pΘ(x|z)]︸ ︷︷ ︸
Reconstruction of x

−KL[qϕ(z, c|x)||p(z|c)p(c)]︸ ︷︷ ︸
Structure latent space
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Example 1: Withings’ sleep dataset guided by AHI

• In x, data available with the watch and the sleep analyzer
• Sleep duration (+ light/deep sleep duration)
• Number of sleep interruptions
• BMI
• Age

• In y, the AHI score, available only with the sleep analyzer

⇒ Goal: Find clusters that are interpretable in the sense of their AHI score without
using the information as input.
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Impact of the guiding variable

• Comparison of the clustering with and without the AHI as a guiding variable.

Figure: Kernel density plots comparing per-feature distributions across the two clusters in the test dataset.
(Up) Model without any guiding variable. (Down) Model with AHI as the guiding variable.
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Impact of the guiding variable

Figure: Kernel density plot illustrating the distribution of AHI values across each cluster in the test
dataset. (Left) Model without any guiding variable. (Right) Model with AHI as the guiding variable.
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Contribution

• Contextually guided clustering: introduction of a guiding variable y, preserving
the full richness of the original dataset x.

• Adaptability to different contexts: adapt to different contexts by changing the
guiding variable y, allowing for flexibility to adjust the clustering objective to a new
context.

• Generative architecture for interpretability: can generate both input data x and
guiding variables y along with the clustering, enhancing cluster interpretability.

• Inference independence: y is used only in the generative model, leaving the
inference process to rely solely on x. The model remains applicable even when y is
unavailable at prediction time.

• Uncertainty quantification: leverages the VAE’s probabilistic nature to estimate
cluster membership probabilities and quantify assignment uncertainties.
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Thank you !
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Probabilistic ML

• Probabilistic model is a joint distribution of hidden variables (z, c) and observed
variables (x, y):

pΘ(z, c, x, y)

• Inference about the unknown is performed through the posterior:

p(z, c|x, y) = pΘ(z, c, x, y)

p(x, y)

• Denominator not tractable → approximate posterior inference
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Objective

The ELBO is a lower bound of the observed likelihood:

KL[qϕ(z, c|x)||pΘ(z, c|x, y)]

= −Eqϕ(z,c|x)

[
log

pΘ(z, c|x, y)
qϕ(z, c|x)

]
= −Eqϕ(z,c|x)

[
log

pΘ(z, c, x, y)

qϕ(z, c|x)

]
+ log p(x, y)

⇒ log p(x, y) ≥ Eqϕ(z,c|x)

[
log

pΘ(z, c, x, y)

qϕ(z, c|x)

]
.

The objective is to maximize the ELBO:

argmax
Θ,ϕ

ELBO(x, y)

= argmax
Θ,ϕ

Eqϕ(z,c|x)

[
log

pΘ(z, c, x, y)

qϕ(z, c|x)

]
.
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Approximate q(c|x)

ELBO(x, y) = Eqϕ(z,c|x)

[
log

pΘ(z, c, x, y)

qϕ(z, c|x)

]
=

∫ K∑
c=1

qϕ(z|x)q(c|x) log
pΘ(y|z)pΘ(x|z)pΘ(z|c)pΘ(c)

qϕ(z|x)q(c|x)
dz

=

∫
qϕ(z|x) log

pΘ(y|z)pΘ(x|z)pΘ(z)
qϕ(z|x)

dz −
∫

qϕ(z|x) KL[q(c|x)||pΘ(c|z)]dz

The 1st term does not depend on c and the 2nd term is non-negative.
⇒ Maximizing the lower bound ELBO with respect to q(c|x) requires that
KL[q(c|x)||pΘ(c|z)] = 0. With ν a constant, we have:

q(c|x)
pΘ(c|z)

= ν.
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Approximate q(c|x)

Since
∑

c q(c|x) = 1 and
∑

c pΘ(c|z) = 1, we have:

q(c|x)
pΘ(c|z)

= 1.

Taking the expectation on both sides, we can obtain:

q(c|x) = Eqϕ(z|x)[pΘ(c|z)].

We will approximate q(c|x) using the SGVB estimator:

q(c|x) = Eqϕ(z|x)[p(c|z)] ≃
1

L

L∑
l=1

pΘ(z
(l)|c)pΘ(c)∑

c′ pΘ(z
(l)|c′)pΘ(c′)

.
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Developed ELBO

ELBO(x, y) = − 1

L

L∑
l=1

||y − fθy(z
(l))||22 −

1

L

L∑
l=1

||x− fθx(z
(l))||22

− 1

2

K∑
c=1

q(c|x)
J∑

j=1

(
log σ2

cj +
σ̃2
j

σ2
cj

+
(µ̃j − µcj)

2

σ2
cj

)

+

K∑
c=1

q(c|x) log πc +
1

2

J∑
j=1

(1 + log σ̃2
j )−

K∑
c=1

q(c|x) log q(c|x)

with z(l) ∼ N (µ̃, σ̃2I), and [µ̃, log σ̃2] = gϕ(x). L is the number of Monte Carlo samples
in the Stochastic Gradient Variational Bayes estimator and J is the dimension of z.
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Initialization GMM

• Pre-training is used to initialize GMM parameters (µ, σ).

• We introduce the weight α in the loss function to balance the reconstruction of x, y
and the structure of the latent space without the clusters

ELBOα,β(x, y) = α×Eqϕ(z|x)[log pΘ(y|z)] + Eqϕ(z|x)[log pΘ(x|z)]
− β × KL[qϕ(z|x)||N (z; 0J , I)]

with 0J a vector null of dimension J .

• By prioritizing the reconstruction of y with α > 1, we encourage the model to align
the latent space with the guiding variable.
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Example 2: MNIST/SVHN

• x: SVHN images

• y: MNIST images

⇒ Goal: Find clusters that are generative both of SVHN and MNIST images, therefore
that have a meaning in both domains.
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Generative property of the clusters

• The generative aspect - key for the interpretation

Figure: Four examples of generated SVHN images (left) and a generated MNIST images (right) of five
clusters.
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Implementation details MNIST/SVHN

• CNNs for both the encoder and the decoder of SVHN, and a MLP for the decoder of
MNIST.

• Latent space dimension: 20.

• β = 3.

• Pretraining: α = 10, learning rate = 0.0001.

• Training: learning rate of 0.001 for the parameters of the encoder and decoders, and
0.0001 for the parameters of the GMM, and set the number of clusters to 10.

9 / 14



Visualization of the clusters during the training

Figure: t-SNE visualisations at different epoch during the training of 5, 000 training images.
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Comparison of the performance on standard benchmarks

Table: ACC on standard clustering benchmarks.

Model ACC

Clustering models with image-specific transformations
DTI K-means [Monnier et al., 2020] 44.5%
SCAE [Kosiorek et al., 2019] 55.3%
DTI GMM [Monnier et al., 2020] 57.4%
ACOL-GAR [Kilinc and Uysal, 2018] 76.8%

Clustering models with domain-agnostic designs
GMM [Dempster et al., 1977] 11.6%
DEC [Xie et al., 2016] 11.9%
K-means [MacQueen, 1967] 12.2%
VaDE [Jiang et al., 2017] 30.8%
MFCVAE [Falck et al., 2021] 56.3%
IMSAT [Hu et al., 2017] 57.3%
GCVAE 64.2%
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Implementation details Withings sleep dataset

• MLPs in the encoder and both the decoders.

• Latent space dimension: 5.

• β = 0.03.

• Pretraining: α = 10, learning rate = 0.00005.

• Training: learning rate of 0.0001 for the parameters of the encoder and decoders,
and 0.00001 for the parameters of the GMM, and set the number of clusters to 2.
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Withings’ dataset details

• 50,000 individuals - 1 night per individual
• Recorded by the Withings Sleep Analyzer1

• Equal number of users across the three categories based on the AHI

Table: Descriptive statistics of the variables

Variable (unit) Range Mean Std. Dev.
sleep duration (seconds) 14880 – 36000 26224 4224
light sleep duration (seconds) 3600 – 31860 15747 4651
deep sleep duration (seconds) 3600 – 32220 10472 4022
nb sleep interruptions 0 – 20 2.74 2.34
avg night hr (bpm) 40 – 111 62.49 8.57
bmi (kg/m²) 16 – 50 27.53 5.14
age (years) 18 – 80 50 12.67
apnea hypopnea index 0 – 40 18.14 13.47

1https://www.withings.com/us/en/sleep
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Future works

Dynamic clustering: Extend the model for time series data to allow individual cluster
assignments to evolve over time.
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