

université

PARIS-SACLAY

Neural Simulation Based Inference for Parameter Estimation in Higgs boson physics"

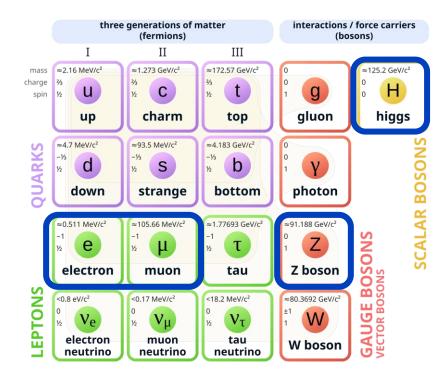
Ragansu Chakkappai, Arnaud J Maury, David Rousseau, Arthur Schaffer

> 25th March 2025 "Mathematical Foundations of AI" day

The Standard Model of Particle Physics

Fermions: ½-spin

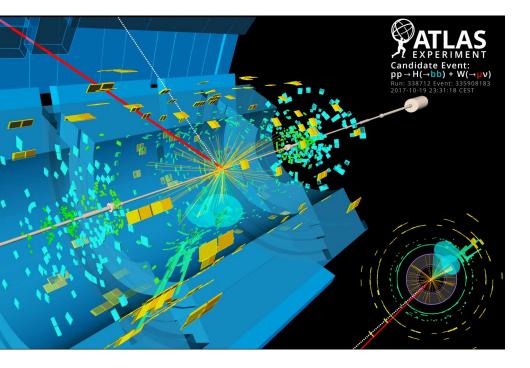
- Quarks : Strong (and weak) force
- Leptons : Weak force



Bosons: 0- or 1-spin

- Gauge bosons : mediate interactions
- Higgs boson : mass term for fermions

Higgs Boson



- → The Higgs mechanism give mass of fundamental particles
- → Proposed in 1964
- \rightarrow Discovered in 2012 at ATLAS and

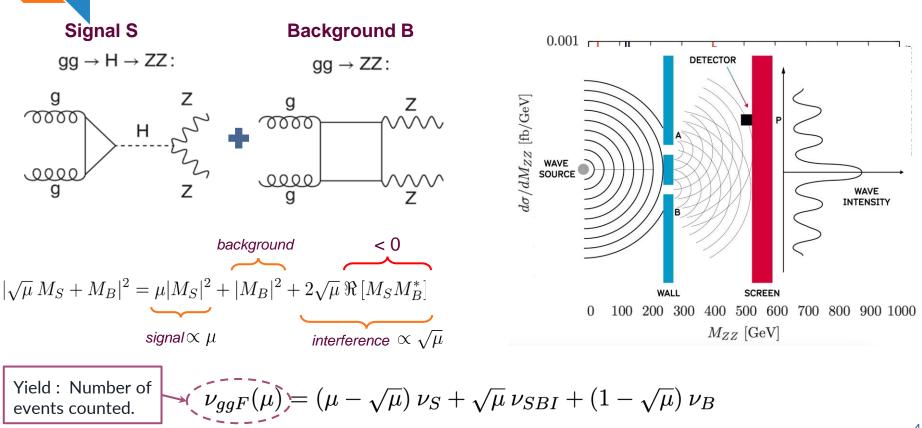
CMS experiment in LHC

→ 2013 Nobel Physics Prize

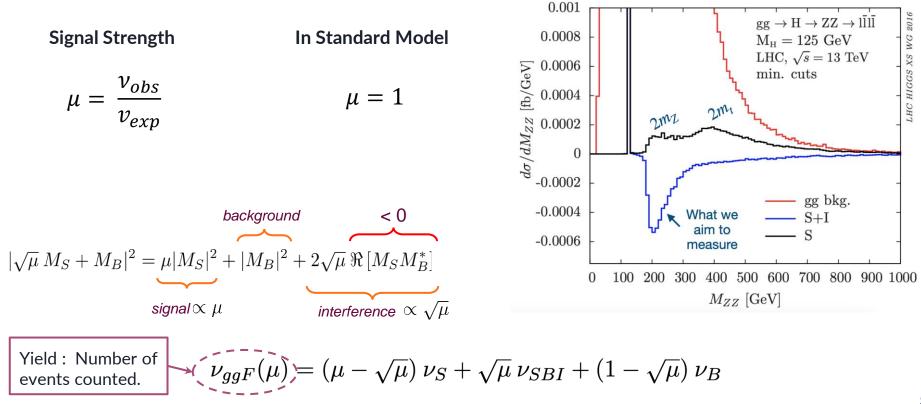
Peter W. Higgs

François Englert

Off-shell Higgs Boson cross-section



Off-shell Higgs Boson cross-section



5

Statistical framework

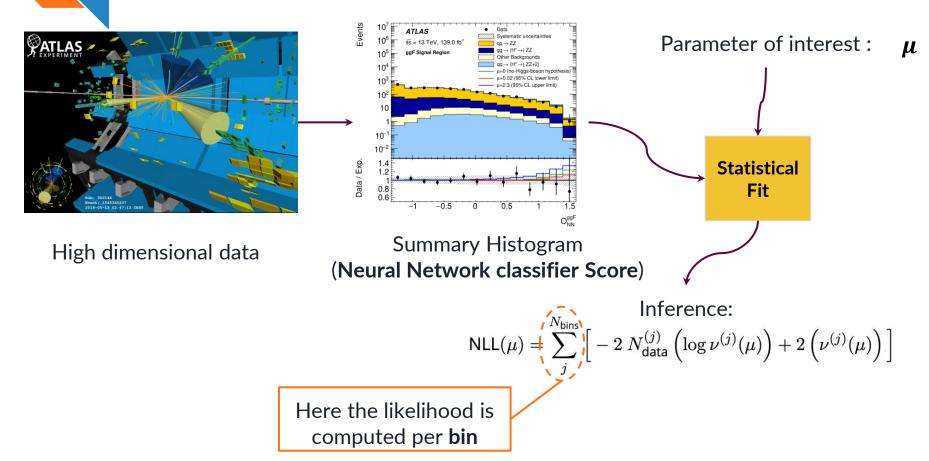
• Probability of a dataset D:
$$p(\mathcal{D}|\mu) = \text{Pois}(N_{\text{data}}|\nu_{pp\to 4\ell}(\mu)) \prod_{i}^{N_{\text{data}}} \frac{1}{\sigma_{pp\to 4\ell}(\mu)} \frac{d\sigma_{pp\to 4\ell}}{dx}(x_i|\mu)$$

• Likelihood:
$$\mathcal{L}(\mu|\mathcal{D}) = \frac{e^{-\nu(\mu)}\nu(\mu)^{N_{\text{data}}}}{N_{\text{data}}!} \prod_{i}^{N_{\text{data}}} \frac{1}{\sigma_{pp \to 4\ell}(\mu)} \frac{d\sigma_{pp \to 4\ell}}{dx}(x_i|\mu)$$

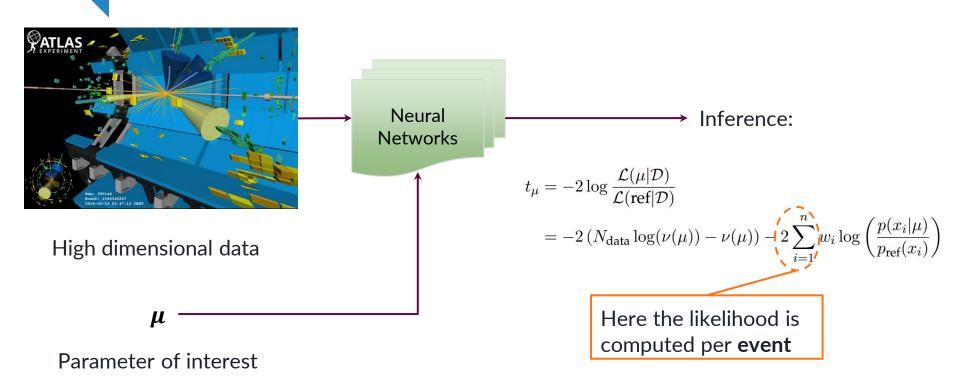
- Negative Log Likelihood: $NLL(\mu) = -2\log(L(\mu|\mathcal{D}))$
- Neyman-Pearson lemma \rightarrow (optimal) test statistic: $t_{\mu} = -2\log\left(\frac{L(\mu|\mathcal{D})}{L(\hat{\mu}|\mathcal{D})}\right) = \text{NLL}(\mu) \text{NLL}(\hat{\mu})$

with
$$\hat{\mu} = \operatorname*{argmin}_{\mu} \mathsf{NLL}(\mu)$$

Classical Histogram Method

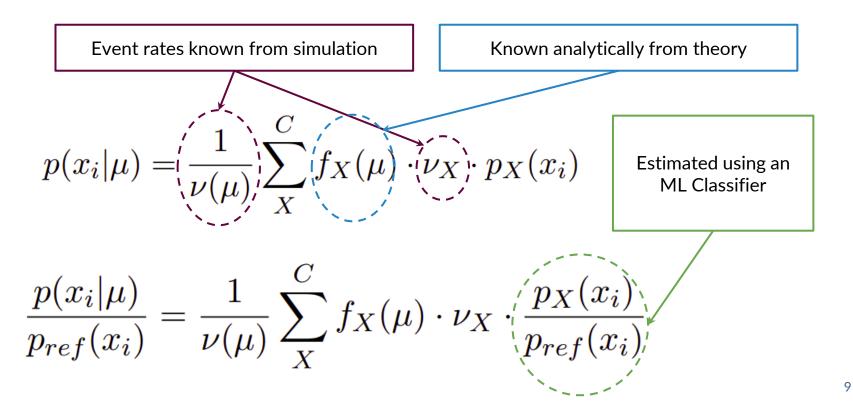


Unbinned high-dimensional neural inference

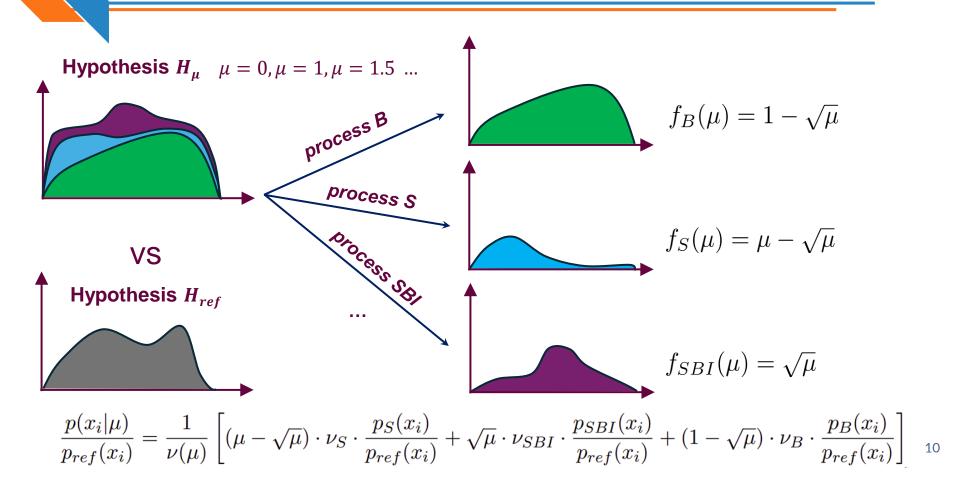


Search-oriented Mixture model

Let $p(x_i|\mu)$ be the probability of finding any event x_i for a given parameter μ



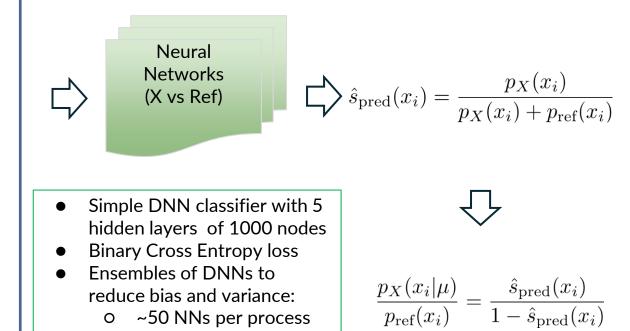
NSBI for Off-shell Higgs Boson



Density ratio estimation using NNs

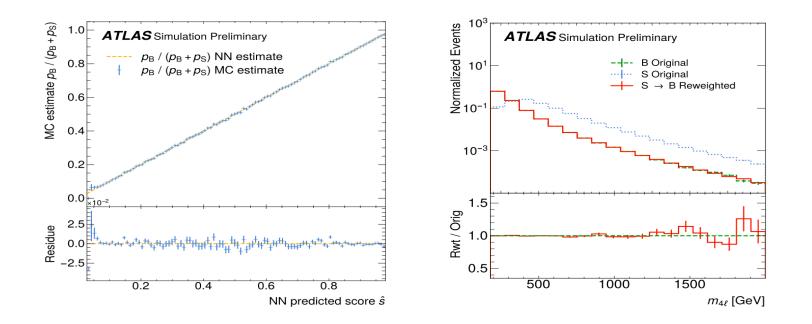
Dataset:

- Tabular datasets with 13 features
- 4 ℓ system decay kinematic variables: $\cos(\theta^*)$, $\cos(\theta_1)$, $\cos(\theta_2)$, ϕ_1 , ϕ , m_{Z_1} , m_{Z_2}
- Higgs production kinematic variables: $p_{T_{4\ell}}$, $\Upsilon_{4\ell}$
- Jet kinematics variables (if applicable): n_{jets} , m_{jj} , ϕ_{jj} , η_{jj}

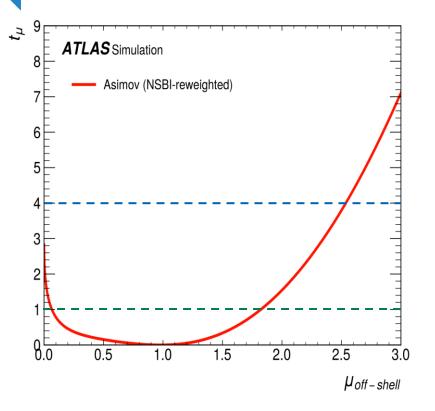


Classifier checks

- Ideally, score should reflect the $\frac{p_X(x_i)}{p_X(x_i) + p_{ref}(x_i)}$
 - Calibration Plots (left) checks this.
- The rewriting plot(right) are signal events reweighted with $\frac{p_X(x_i)}{p_{ref}(x_i)}$



NLL of NSBI H*4l analysis



H^*4l NLL is non-quadratic

 1σ and 2σ Confidence Intervals might not be at 1 and 4...

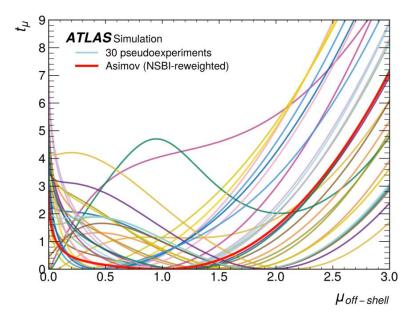
Asimov dataset is the average dataset

NLL minimisation for each pseudo-experiments

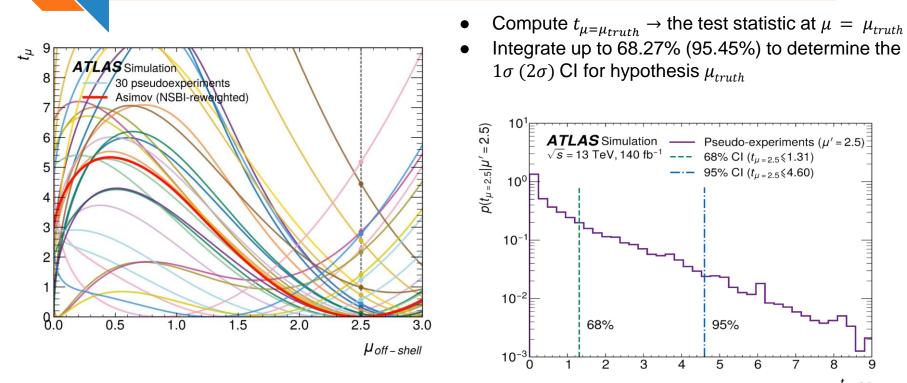
Hypothesis $\mu_{truth} = 1$

Pseudo-experiments with bootstrapped datasets

- ~2000 events sampled with replacement from an Asimov dataset of ~10M
- ~10K pseudo-experiments for each hypothesis μ_{truth}
 - o millions of pseudo-experiments overall
- Due to interference, each pseudo experiment behaves differently from each other



Neyman construction

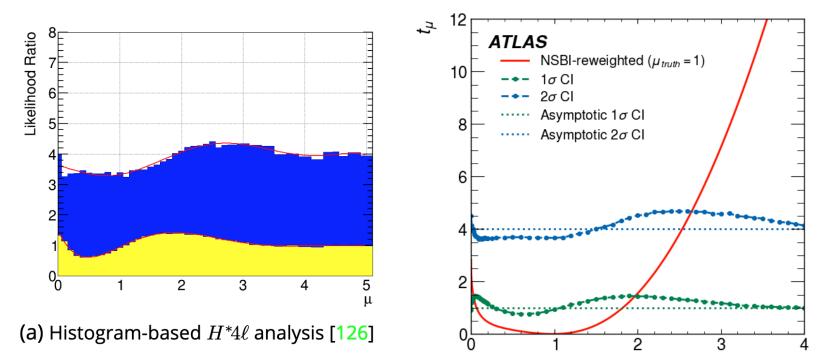


Repeat this study for several hypotheses μ_{truth} ...

8

9 $t_{\mu = 2.5}$

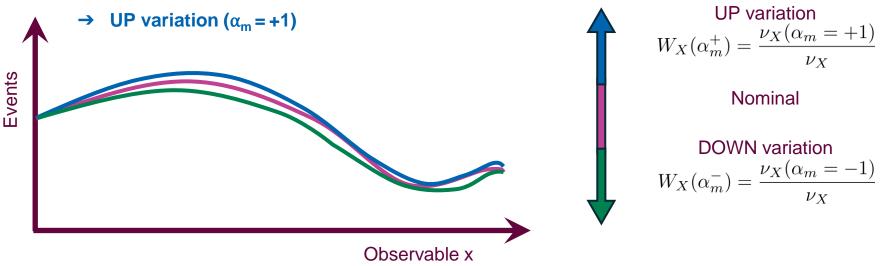
Results of Neyman construction for Stat-only



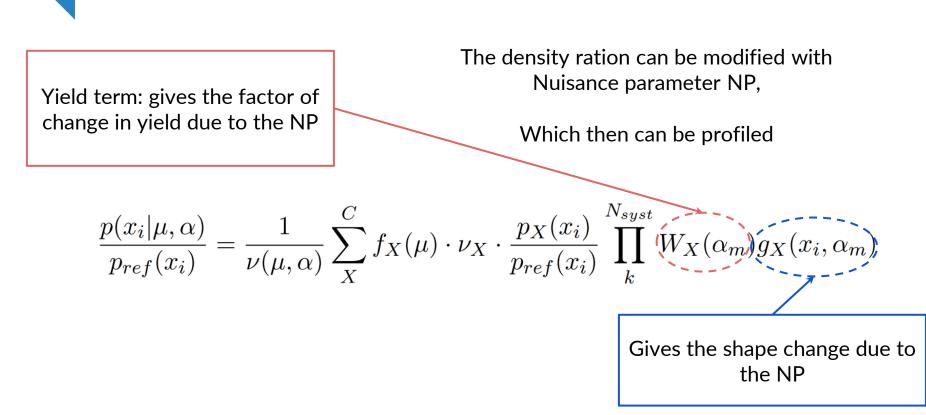
Plot credit: Michiel Jan Veen

Systematic Uncertainties (Epistemic)

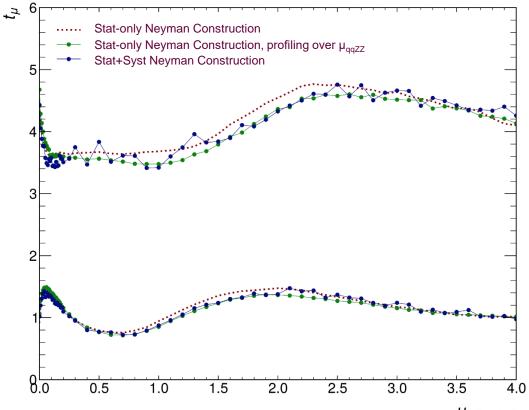
- There are experimental and theoretical uncertainties.
- In our probability model, systematic uncertainties are modelled by Nuisance Parameters α
- → DOWN variation ($\alpha_m = -1$)
- → Nominal ($\alpha_m = 0$)



Systematic Uncertainties (Epistemic)



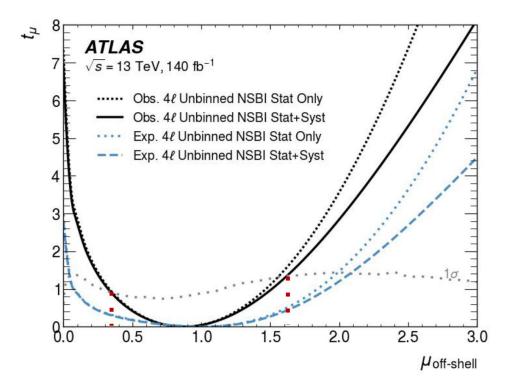
Results of Neyman construction for Stat+Syst



- Similar Confidence Intervals
- Stat-only CIs are sufficient
- Stat+Syst verification needed

Results of NSBI H*4I analysis

Observed off-shell signal strength $\mu_{\text{off-shell}} = 0.87^{+0.75}_{-0.54}$



Conclusion and Discussion

- The first implementation of Neural Simulation Based Inference (NSBI) in Particle Physics
- 2 ATLAS papers made public in Nov 2024 (submitted to Report on Progress on Physics)
 - Methods Paper : arXiv:2412.01600 [hep-ex]
 - O Physics Analysis Paper: arXiv:2412.01548 [hep-ex]
- NSBI: well-suited for similar problems with strong (negative) quantum interferences

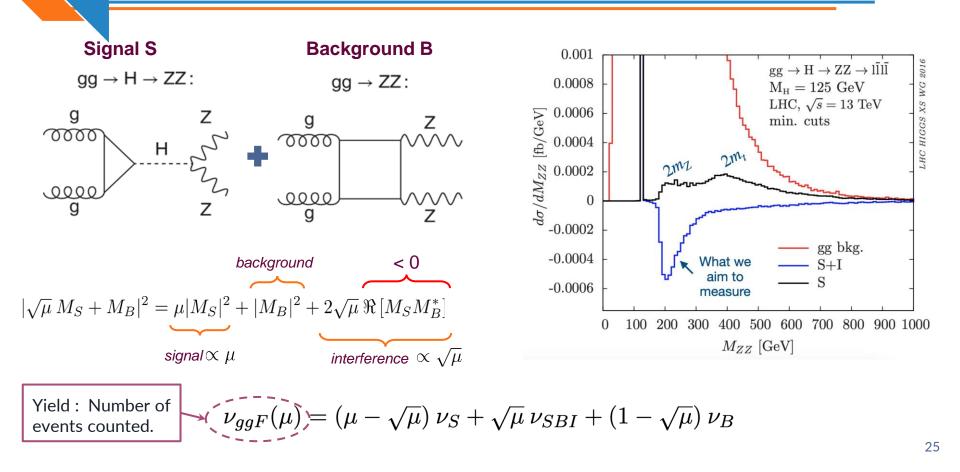
Fair Universe: HiggsML Uncertainty Challenge



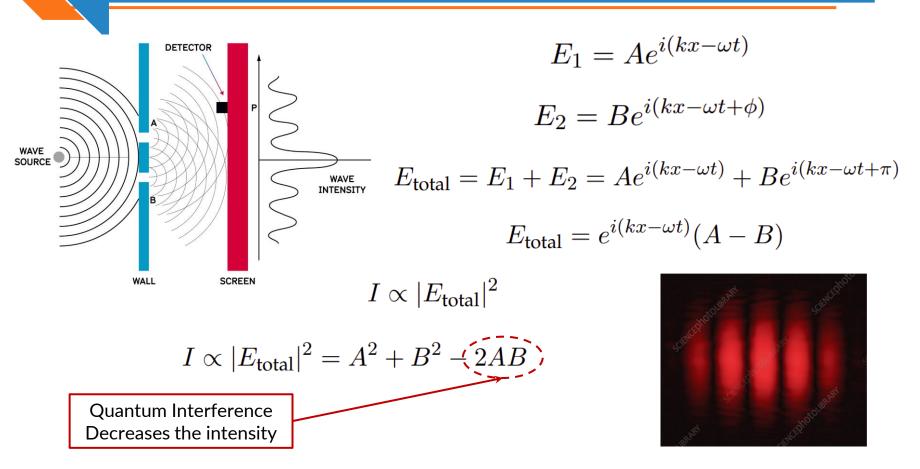
- HiggsML Uncertainty Challenge Ran from September 12 to March 14th
- Accepted as <u>NeurIPS competition</u> 2024
- Dedicated workshop at NeurIPS 2024 Conference , Vancouver

Thank you for your attention!

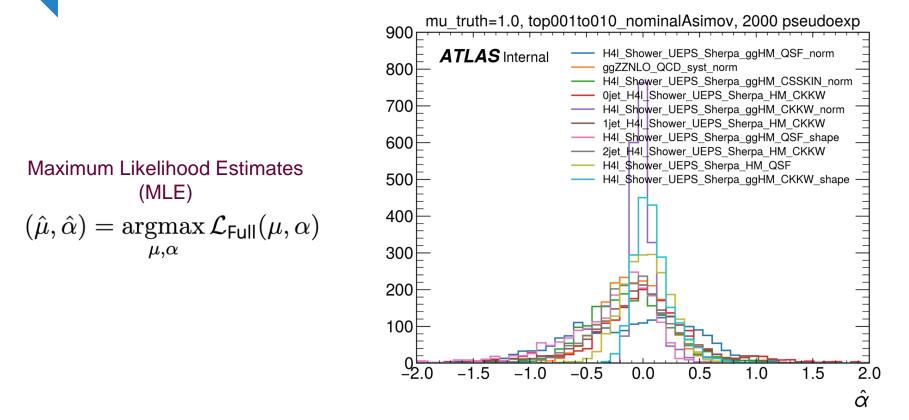
Off-shell Higgs Boson cross-section



Quantum Interference



Neyman construction with systematics (Nuisance Parameters)



Systematics - Interpolation

- The $G(\alpha)$ is the then fitted from ratio of the yields
- $gx(\alpha +)$ and $gx(\alpha -)$ is density ratio from NN Classifiers (+/- vs nominal)
- $g(\alpha)$ is a polynomial fit between them

$$W_X(\alpha_m) = \begin{cases} \left(\frac{\nu_X(\alpha_m^{(+)})}{\nu_X(\alpha_m^{0})}\right)^{\alpha_m}, & \text{if } \alpha_m > 1\\ 1 + \sum_{n=1}^3 c_n \alpha^n_k, & \text{if } -1 \le \alpha_m \le 1\\ \left(\frac{\nu_X(\alpha_m^{(-)})}{\nu_X(\alpha_m^{0})}\right)^{-\alpha_m}, & \text{if } \alpha_m < -1\\ g_X(x_i, \alpha_m) = \begin{cases} g_X(x_i, \alpha_m^{(+)})^{\alpha_m}, & \text{if } \alpha_m > 1\\ 1 + \sum_{n=1}^3 c_n \alpha^n_k, & \text{if } -1 \le \alpha_m \le 1\\ g_X(x_i, \alpha_m^{(-)})^{-\alpha_m}, & \text{if } \alpha_m < -1\\ g_X(x_i, \alpha_m^{(-)})^{-\alpha_m}, & \text{if } \alpha_m < -1 \end{cases} \end{cases}$$