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Not far from a well-known problem in transfer learning: negative transfer

@ Main aim of our contribution: robustness to irrelevant AlS...
@ ..While still accelerating convergence for relevant AIS



Introducing robust MFBO (rMFBO)

@ Inanutshell, carry MFBO ... BUT ...

@ ..Keep track of what would have looked like the acquisition trajectory without
AlIS using a single-output GP = HOW?

At iteration t, choose between two queries:

(XItVI F/ gt) = argmax OZ(X, flluMF/ OMF, gMF)//\lt
xeZ’ Le{obj, AIS}

SF .
(X[t) ’ ObJ) = argmax OK(XLUSF, OsF, gpSF)
xeZ’

If ome (7", 0bj) < ¢; = joint model reliable at X", i.e. yo (foF) ~ fobi (X?SF)

Therefore Z/P5F « (X?SF, #ﬁ/lej (X?SF)): creating a pseudo single fidelity track



Summary

pick (MF, ¢,)
oMF(x?SF,obj) < = gMF (X';"F,f(t’t)(XyF))

SF pSF  obj, pSF
P = (X, e )
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Summary

SF .
omp(xp,0b)) <¢p =

Ensures
pseudo-queries
added to SFBO
are trustworthy:
unreliable case

If not satisfied:
@ Pick (x*°7, obj)
Q@ M (xPF, fobi (xP°F))
e QPSF - (X[t)SF’fobj (X[tJSF))

ZPSF and Z5F only differ at the points where we inputted 1o (x

pick (xMF

gMF

GPSF

’ ft)
X', 04

pSF  obj, pSF
(¢, tmr(x; )

SF
because x?>" only

brings little information

pSF
P!
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rMFBO regret can be tied to that of SFBO

Assumptions:
° f°bj is drawn from a GP with zero-mean and covariance function x(x, x")
@ « is known and twice differentiable

afobj

@ IP|sup|=-

xez | 7%

@ The mapping (x, &) — a(x|p(f|2)) is twice differentiable

> LJ <ac ™’V jefl,..,d), forab >0

Theorem:
for any AIS, the difference in regrets achieved by SFBO and rMFBO can be bounded.

No assumption on the amount of information that fA'S can provide about f°°!

R(A, xMF) < R(A,x3F) + ¢ max {TMTdT+1,2} with probability > g (1 —daexp (—blz))
.

c1(e,q) = m-



Interested? Have a look at the paper "\_(*V)_/~

Petrus Mikkola, Julien Martinelli, Louis Filstroff, Samuel Kaski
Multi-Fidelity Bayesian Optimization with Unreliable Sources. AISTATS 2023.



Some stuff (continued) \_(*V)_/~

mput(X XY+ ke(x,x") =0 #1
|nput( /) otherwise

kmiso((x, €), (X', ")) = {

kir((x,0), (¢, ) = {];j”p“t(x’x’) + (=00 - ksl x) €#1, ¢ #1

input (0, X”) otherwise
Ckinput(xz x)+(@1-0)01- f/)kinput(xr x) €#1, 0 #1
Ckinput(xz x’) otherwise

kos((x, 0), (X", ")) = {



