
Bayesian formulation of Regularization by
denoising. Application to image restoration

Diarra FALL
Institut Denis Poisson, Unité Mixte de Recherche
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Image Restoration

I Goal : restore an original image from its observed degraded version.

Deblurring Inpainting Super-resolution
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Problem Statement

Consider image restoration as an inverse problem :

y = Ax + n (1)

I x ∈ Rn : true unknown image,
I y ∈ Rm : measured data,
I A ∈ Rm×n : degradation matrix,
I n ∈ Rn : additive noise.

I Estimating x from y is generally an ill-posed or, at least,
ill-conditioned problem.

I ⇒ Additional information is needed.
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Bayesian Modeling

y = Ax + n,

I A Bayesian model assumes that the parameter is a random quantity.
I Ingredients :

I Prior over parameter : x ∼ p(x).
I Likelihood : y|x ∼ p(y|x).
I Posterior : compute the parameter distribution given the data.
→ Bayes’ theorem :

p(x|y) = p(x)p(y|x)∫
p(x)p(y|x)dx

.

I One can compute an estimate of the parameter
I Maximum a posteriori : x̂MAP = argmax

x
p(x|y).

I Posterior mean : x̂PM = E[x|y] =
∫

xp(x|y)dx.
I and perform uncertainty quantification through credible intervals/

pixelwise standard deviations.
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Image Restoration Formulation

I In the following

p(y|x) ∝ exp [−f (x, y)] ,
p(x) ∝ exp [−βg(x)] ,

such that
p(x|y) ∝ exp [−f (x, y)− βg(x)] . (2)

I How to choose the prior potential g ? → Deep learning based prior.
I Regularization by Denoising (RED) [Romano, Elad, Milanfar, 2017].

Use an explicit regularization term :

gred(x) = 1
2 xT (x−Dν(x)), (3)

where Dν : Rn → Rn is a (deep) denoiser designed for the removal
of additive white Gaussian noise.
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Proposed Probabilistic counterpart of RED
I We introduce a prior distribution defined from the RED potential

gred(·) and define

pred(x) ∝ exp [−βgred(x)] = exp
[
−β2 x> (x− Dν(x))

]
. (4)

I For pred(·) to be a valid p.d.f., i.e.
∫
Rn pred(x)dx <∞, certain

conditions must be satisfied.

Assumption 1
The Hessian matrix Λ(x) = In −∇Dν(x), ∀x ∈ Rn, has at least one
non-zero eigenvalue.
I Assumption 1 is violated only in trivial cases.

Proposition 1
If Assumption 1 + Some conditions on the denoiser hold, then∫

Rn
pred(x)dx < +∞

and pred(·) in (4) defines a proper p.d.f.
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Proposed Sampling Scheme

I Goal : sample from the posterior

π(x) = p(x|y) ∝ exp [−f (x, y)− βgred(x)] . (5)

I Leverage an asymptotically exact data augmentation (AXDA) as
introduced by [Vono, Dobigeon, Chainais, 2019].

I Idea : introduce an auxiliary variable z ∈ Rn and consider the
augmented posterior distribution

πρ(x, z) = p(x, z|y; ρ2) (6)

∝ exp
[
−f (x, y)− βgred(z)− 1

2ρ2 ||x− z||2
]
,

ρ > 0 : parameter controlling the dissimilarity between x and z.
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Proposed Sampling Scheme
I The SGS alternatively samples according to the two conditionals to

generate samples asymptotically distributed according to πρ(x, z) :

pρ(x|y, z) ∝ exp
[
−f (x, y)− 1

2ρ2 ||x− z||2
]

(7)

pρ(z|x) ∝ exp
[
−βgred(z)− 1

2ρ2 ||x− z||2
]
. (8)

I Advantages of splitting :
3 The separation of the two components f (·, ·) and gred(·).
3 Simpler, scalable and more efficient sampling schemes.

I Letting
f (x, y) = 1

2σ2 ‖Ax− y‖2
2, (9)

Sampling from (7) ⇔ sampling from a high-dimensional Gaussian.
I Sampling from (8) not easy due to the regularization potential

gred(·) involving the denoiser Dν(·) ⇒ ULA step :

z(t+1) = z(t) + γ∇ log pρ

(
z(t) | x

)
+
√

2γε(t) (10)

γ > 0 : step-size ;
{

ε(t)} : Gaussian random variables.
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Numerical Experiments
Ground
Truth

Observation RED-
ADMM

PnP-ULA RED-
LwSGS

RED-
LwSGS

(std)

FFHQ data set : images recovered by the compared methods for deblurring
(top), inpainting (middle) and super-resolution (bottom).
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Performance Metrics

PSNR(dB) ↑ SSIM ↑ LPIPS (×10−2) ↓ FID ↓ Time(s) ↓
MCMC-based methods

RED-LwSGS 30.43±2.161 0.872±0.036 3.519±2.139 100.09±34.62 115±25
PnP-ULA 29.01±2.013 0.847±0.037 5.025±2.359 202.15±48.02 128±40
TV-MYULA 28.99±2.017 0.847±0.037 4.925±2.435 202.29±48.30 133±26
TV-SP 28.94±2.019 0.846±0.037 5.125±2.435 199.16±47.63 112±23

Optimization-based methods
RED-ADMM 30.49±2.222 0.875±0.036 3.418±2.038 95.48±33.51 3±1
RED-HQS 30.54±2.206 0.876±0.036 3.418±2.037 95.10±33.33 3±1
PnP-ADMM 30.13±2.184 0.867±0.037 3.510±2.140 110.04±36.31 3±1
DiffPIR 30.99±2.212 0.868±0.034 1.112±0.821 65.16±30.15 50±4
DPS 28.94±1.798 0.833±0.054 5.842±4.591 18.32±42.57 3±1
DPIR 30.21±2.279 0.869±0.038 2.720±3.910 105.47±36.21 3±1

Super-resolution : average performance over a test set of 100 images from
FFHQ.
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Convergence Property

Deblurring Inpainting Super-resolution
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Auto-correlation functions for the three problems.
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Conclusion

I Summary : the proposed method
3 Combines the advantages offered by the Bayesian and the deep
NN frameworks.

1. Use of deep neural networks data-driven priors.
2. Uncertainty quantification.

3 PSNR performances similar to optimization-based algorithms while
scaling efficiently to high dimension.
3 Theoretical guarantees of the proposed MCMC scheme
(convergence guarantee, bias quantification).

I Ongoing work :
I Extension of the proposed framework and its theoretical analysis to

non-linear inverse problems.
I Applications to medical imaging.
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For more information :
I E.C. Faye, M.D. Fall and N. Dobigeon ”Regularization by denoising :

Bayesian model and Langevin-within-split Gibbs sampling”, IEEE
Transactions on Image Processing, vol 34, pages 221-234, 2024.

Generalization of the proposed sampling scheme to various
data-driven priors. Application on real data sets :

I E.C. Faye, M.D. Fall, S. Delchini and N. Dobigeon”Bridging
data-driven priors via the score function in Bayesian inverse problems
- Efficient Monte Carlo sampling and comparative study”,
Submitted.
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Thank you for your attention !
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