Bayesian formulation of Regularization by denoising. Application to image restoration

Diarra FALL Institut Denis Poisson, Unité Mixte de Recherche CNRS, Université d'Orléans, Université de Tours, FRANCE.

Joint work with: Elhadji C. Faye and Nicolas Dobigeon

Mathematical Foundations of AI - Paris, 25/03/2025

Image Restoration

▶ Goal : restore an original image from its observed degraded version.

Problem Statement

Consider image restoration as an inverse problem :

$$\mathbf{y} = \mathbf{A}\mathbf{x} + \mathbf{n} \tag{1}$$

- ▶ $\mathbf{x} \in \mathbb{R}^n$: true unknown image,
- ▶ $\mathbf{y} \in \mathbb{R}^m$: measured data,
- ▶ $\mathbf{A} \in \mathbb{R}^{m \times n}$: degradation matrix,
- ▶ $\mathbf{n} \in \mathbb{R}^n$: additive noise.
- Estimating x from y is generally an ill-posed or, at least, ill-conditioned problem.
- \blacktriangleright \Rightarrow Additional information is needed.

Bayesian Modeling

 $\mathbf{y} = \mathbf{A}\mathbf{x} + \mathbf{n},$

A Bayesian model assumes that the parameter is a random quantity.

- Ingredients :
 - **Prior** over parameter : $\mathbf{x} \sim p(\mathbf{x})$.
 - Likelihood : $\mathbf{y}|\mathbf{x} \sim p(\mathbf{y}|\mathbf{x})$.
 - **Posterior** : compute the parameter distribution given the data.

 \rightarrow Bayes' theorem :

$$p(\mathbf{x}|\mathbf{y}) = \frac{p(\mathbf{x})p(\mathbf{y}|\mathbf{x})}{\int p(\mathbf{x})p(\mathbf{y}|\mathbf{x})d\mathbf{x}}.$$

Bayesian Modeling

 $\mathbf{y} = \mathbf{A}\mathbf{x} + \mathbf{n},$

- A Bayesian model assumes that the parameter is a random quantity.
- Ingredients :
 - **Prior** over parameter : $\mathbf{x} \sim p(\mathbf{x})$.
 - Likelihood : $\mathbf{y}|\mathbf{x} \sim p(\mathbf{y}|\mathbf{x})$.
 - Posterior : compute the parameter distribution given the data. → Bayes' theorem :

$$p(\mathbf{x}|\mathbf{y}) = \frac{p(\mathbf{x})p(\mathbf{y}|\mathbf{x})}{\int p(\mathbf{x})p(\mathbf{y}|\mathbf{x})d\mathbf{x}}.$$

- One can compute an *estimate* of the parameter
 - Maximum a posteriori : $\hat{\mathbf{x}}_{MAP} = \operatorname{argmax} p(\mathbf{x}|\mathbf{y})$.

• Posterior mean : $\hat{\mathbf{x}}_{PM} = \mathbb{E}[\mathbf{x}|\mathbf{y}] = \int \mathbf{x} p(\mathbf{x}|\mathbf{y}) d\mathbf{x}$.

 and perform uncertainty quantification through credible intervals/ pixelwise standard deviations.

Image Restoration Formulation

In the following

$$p(\mathbf{y}|\mathbf{x}) \propto \exp\left[-f(\mathbf{x},\mathbf{y})
ight],$$

 $p(\mathbf{x}) \propto \exp\left[-eta \mathbf{g}(\mathbf{x})
ight],$

such that

$$p(\mathbf{x}|\mathbf{y}) \propto \exp\left[-f(\mathbf{x},\mathbf{y}) - \beta g(\mathbf{x})\right].$$
(2)

Image Restoration Formulation

In the following

$$p(\mathbf{y}|\mathbf{x}) \propto \exp\left[-f(\mathbf{x},\mathbf{y})
ight],$$

 $p(\mathbf{x}) \propto \exp\left[-eta \mathbf{g}(\mathbf{x})
ight],$

such that

$$p(\mathbf{x}|\mathbf{y}) \propto \exp\left[-f(\mathbf{x},\mathbf{y}) - \beta g(\mathbf{x})\right].$$
 (2)

 How to choose the prior potential g? → Deep learning based prior.
 Regularization by Denoising (RED) [Romano, Elad, Milanfar, 2017]. Use an explicit regularization term :

$$g_{\rm red}(\mathbf{x}) = \frac{1}{2} \mathbf{x}^{\mathsf{T}} (\mathbf{x} - \mathcal{D}_{\nu}(\mathbf{x})), \qquad (3)$$

where $\mathcal{D}_{\nu}: \mathbb{R}^n \to \mathbb{R}^n$ is a (deep) denoiser designed for the removal of additive white Gaussian noise.

Proposed Probabilistic counterpart of RED

• We introduce a prior distribution defined from the RED potential $g_{red}(\cdot)$ and define

$$p_{\mathrm{red}}(\mathbf{x}) \propto \exp\left[-\beta g_{\mathrm{red}}(\mathbf{x})\right] = \exp\left[-\frac{\beta}{2}\mathbf{x}^{\top}\left(\mathbf{x} - \mathsf{D}_{\nu}(\mathbf{x})\right)\right].$$
 (4)

For p_{red}(·) to be a valid p.d.f., i.e. ∫_{ℝⁿ} p_{red}(x)dx < ∞, certain conditions must be satisfied.</p>

Proposed Probabilistic counterpart of RED

We introduce a prior distribution defined from the RED potential g_{red}(·) and define

$$p_{\mathrm{red}}(\mathbf{x}) \propto \exp\left[-\beta g_{\mathrm{red}}(\mathbf{x})\right] = \exp\left[-\frac{\beta}{2}\mathbf{x}^{\top}\left(\mathbf{x} - \mathsf{D}_{\nu}(\mathbf{x})\right)\right].$$
 (4)

▶ For $p_{red}(\cdot)$ to be a valid p.d.f., i.e. $\int_{\mathbb{R}^n} p_{red}(\mathbf{x}) d\mathbf{x} < \infty$, certain conditions must be satisfied.

Assumption 1

The Hessian matrix $\Lambda(\mathbf{x}) = \mathbf{I}_n - \nabla D_{\nu}(\mathbf{x})$, $\forall \mathbf{x} \in \mathbb{R}^n$, has at least one non-zero eigenvalue.

Assumption 1 is violated only in trivial cases.

Proposition 1

If Assumption 1 + Some conditions on the denoiser hold, then

$$\int_{\mathbb{R}^n} p_{\mathrm{red}}(\mathsf{x}) d\mathsf{x} < +\infty$$

and $p_{\rm red}(\cdot)$ in (4) defines a proper p.d.f.

Proposed Sampling Scheme

Goal : sample from the posterior

$$\pi(\mathbf{x}) = p(\mathbf{x}|\mathbf{y}) \propto \exp\left[-f(\mathbf{x},\mathbf{y}) - \beta g_{\mathrm{red}}(\mathbf{x})\right].$$
(5)

- Leverage an asymptotically exact data augmentation (AXDA) as introduced by [Vono, Dobigeon, Chainais, 2019].
- ► Idea : introduce an auxiliary variable z ∈ ℝⁿ and consider the augmented posterior distribution

$$\pi_{\rho}(\mathbf{x}, \mathbf{z}) = \rho(\mathbf{x}, \mathbf{z} | \mathbf{y}; \rho^{2})$$

$$\propto \exp\left[-f(\mathbf{x}, \mathbf{y}) - \beta g_{\text{red}}(\mathbf{z}) - \frac{1}{2\rho^{2}} ||\mathbf{x} - \mathbf{z}||^{2}\right],$$
(6)

 $\rho > {\rm 0}$: parameter controlling the dissimilarity between ${\bf x}$ and ${\bf z}.$

Proposed Sampling Scheme

The SGS alternatively samples according to the two conditionals to generate samples asymptotically distributed according to π_ρ(x, z) :

$$p_{\rho}(\mathbf{x}|\mathbf{y},\mathbf{z}) \propto \exp\left[-f(\mathbf{x},\mathbf{y}) - \frac{1}{2\rho^2}||\mathbf{x}-\mathbf{z}||^2\right]$$
 (7)

$$p_{\rho}(\mathbf{z}|\mathbf{x}) \propto \exp\left[-\beta g_{\mathrm{red}}(\mathbf{z}) - \frac{1}{2\rho^2} ||\mathbf{x} - \mathbf{z}||^2\right].$$
 (8)

Advantages of splitting :

✓ The separation of the two components $f(\cdot, \cdot)$ and $g_{red}(\cdot)$.

✓ Simpler, scalable and more efficient sampling schemes.

Proposed Sampling Scheme

The SGS alternatively samples according to the two conditionals to generate samples asymptotically distributed according to π_ρ(x, z) :

$$p_{\rho}(\mathbf{x}|\mathbf{y},\mathbf{z}) \propto \exp\left[-f(\mathbf{x},\mathbf{y}) - \frac{1}{2\rho^2}||\mathbf{x}-\mathbf{z}||^2\right]$$
 (7)

$$p_{\rho}(\mathbf{z}|\mathbf{x}) \propto \exp\left[-\beta g_{\mathrm{red}}(\mathbf{z}) - \frac{1}{2\rho^2}||\mathbf{x} - \mathbf{z}||^2\right].$$
 (8)

Advantages of splitting :

✓ The separation of the two components $f(\cdot, \cdot)$ and $g_{red}(\cdot)$.

✓ Simpler, scalable and more efficient sampling schemes.

Letting

$$f(\mathbf{x}, \mathbf{y}) = \frac{1}{2\sigma^2} \|\mathbf{A}\mathbf{x} - \mathbf{y}\|_2^2,$$
(9)

Sampling from (7) ⇔ sampling from a high-dimensional Gaussian.
 Sampling from (8) not easy due to the regularization potential g_{red}(·) involving the denoiser D_ν(·) ⇒ ULA step :

$$\mathbf{z}^{(t+1)} = \mathbf{z}^{(t)} + \gamma \nabla \log p_{\rho} \left(\mathbf{z}^{(t)} \mid \mathbf{x} \right) + \sqrt{2\gamma} \boldsymbol{\varepsilon}^{(t)}$$
(10)

 $\gamma > 0$: step-size ; $\{\varepsilon^{(t)}\}$: Gaussian random variables.

Numerical Experiments

FFHQ data set : images recovered by the compared methods for deblurring (top), inpainting (middle) and super-resolution (bottom).

Performance Metrics

	$\textbf{PSNR}(dB)\uparrow$	SSIM ↑	LPIPS (×10 ⁻²) \downarrow	$FID\downarrow$	$\textbf{Time}(s)\downarrow$
MCMC-based methods					
RED-LwSGS	$30.43{\pm}2.161$	$0.872{\pm}0.036$	$3.519{\pm}2.139$	$100.09{\pm}34.62$	$115{\pm}25$
PnP-ULA	$29.01{\pm}2.013$	$0.847{\pm}0.037$	$5.025{\pm}2.359$	$202.15{\pm}48.02$	$128{\pm}40$
TV-MYULA	$28.99{\pm}2.017$	$0.847{\pm}0.037$	$4.925{\pm}2.435$	$202.29{\pm}48.30$	$133{\pm}26$
TV-SP	$28.94{\pm}2.019$	$0.846{\pm}0.037$	$5.125{\pm}2.435$	$199.16{\pm}47.63$	112 ± 23
Optimization-based methods					
RED-ADMM	30.49±2.222	0.875±0.036	3.418±2.038	95.48±33.51	3±1
RED-HQS	<u>30.54</u> ±2.206	0.876 ±0.036	3.418±2.037	$95.10{\pm}33.33$	3 ± 1
PnP-ADMM	$30.13{\pm}2.184$	$0.867 {\pm} 0.037$	$3.510{\pm}2.140$	$110.04{\pm}36.31$	3 ± 1
DiffPIR	30.99±2.212	$0.868{\pm}0.034$	1.112±0.821	<u>65.16</u> ±30.15	50±4
DPS	$28.94{\pm}1.798$	$0.833{\pm}0.054$	$5.842{\pm}4.591$	18.32±42.57	3 ± 1
DPIR	$30.21 {\pm} 2.279$	$0.869{\pm}0.038$	$2.720{\pm}3.910$	$105.47{\pm}36.21$	3 ± 1

Super-resolution : average performance over a test set of 100 images from $\ensuremath{\mathsf{FFHQ}}$.

Convergence Property

Auto-correlation functions for the three problems.

Conclusion

Summary : the proposed method

 \checkmark Combines the advantages offered by the Bayesian and the deep NN frameworks.

1. Use of deep neural networks data-driven priors.

2. Uncertainty quantification.

 \checkmark PSNR performances similar to optimization-based algorithms while scaling efficiently to high dimension.

✓ Theoretical guarantees of the proposed MCMC scheme (convergence guarantee, bias quantification).

Ongoing work :

- Extension of the proposed framework and its theoretical analysis to non-linear inverse problems.
- Applications to medical imaging.

For more information :

E.C. Faye, M.D. Fall and N. Dobigeon "Regularization by denoising : Bayesian model and Langevin-within-split Gibbs sampling", IEEE Transactions on Image Processing, vol 34, pages 221-234, 2024.

Generalization of the proposed sampling scheme to various data-driven priors. Application on real data sets :

 E.C. Faye, M.D. Fall, S. Delchini and N. Dobigeon "Bridging data-driven priors via the score function in Bayesian inverse problems - Efficient Monte Carlo sampling and comparative study", Submitted.

Thank you for your attention !