Uncertainty in AI driven physical simulation

Dimitrios TZIVRAILIS

March 25, 2025

Introduction

Machine learning models are used to approximate interatomic potentials [1]

Figure 1: Energy and force predictions from NN approximation [3]

Introduction

Machine learning models are used to approximate interatomic potentials [1]

Figure 1: Energy and force predictions from NN approximation [3]

• These models introduce epistemic uncertainty [5] to their predictions due to their training protocols.

Dimitrios TZIVRAILIS (CEA Paris Saclay)

• What is the nature of the noise?

• What is the nature of the noise?

• How can the effect of the noise be mitigated? And how is uncertainty Quantification important for this task?

The ϕ^4 model

Figure 2: A $\vec{\phi}$ configuration in the ferromagnetic phase (left) and a zoomed-in view of the lattice structure (right)

$$S[\vec{\phi}] = \sum_{x \in L} \left[-\sum_{\kappa=1}^{2} \beta \phi_x \phi_{x+e_{\kappa}} + \phi_x^2 + g\left(\phi_x^2 - 1\right)^2 \right]$$

• $-\sum_{\kappa=1}^{2} \beta \phi_{x} \phi_{x+e_{\kappa}}$ interaction between neighbors.

The ϕ^4 model

Figure 2: A $\vec{\phi}$ configuration in the ferromagnetic phase (left) and a zoomed-in view of the lattice structure (right)

$$S[\vec{\phi}] = \sum_{x \in L} \left[-\sum_{\kappa=1}^{2} \beta \phi_x \phi_{x+e_{\kappa}} + \phi_x^2 + g \left(\phi_x^2 - 1 \right)^2 \right]$$

• $-\sum_{\kappa=1}^{2} \beta \phi_{x} \phi_{x+e_{\kappa}}$ interaction between neighbors.

• $\phi_x^2 + g(\phi_x^2 - 1)^2$ interaction term of the field.

Metropolis Hastings's (MH) Algorithm [4]

The MH algorithm is an MCMC method used to sample configurations for computing physical observables in high-dimensional spaces.

• Starts from a configuration $\vec{\phi}$ and we suggest a $\vec{\phi} + \vec{\delta \phi}$.

Metropolis Hastings's (MH) Algorithm [4]

The MH algorithm is an MCMC method used to sample configurations for computing physical observables in high-dimensional spaces.

- Starts from a configuration $\vec{\phi}$ and we suggest a $\vec{\phi} + \vec{\delta \phi}$.
- We calculate the difference of action dS.

$$dS = S[\vec{\phi} + \vec{\delta\phi}] - S[\vec{\phi}] = \vec{\delta\phi} \cdot \nabla S[\vec{\phi}] + \text{extra terms}$$
(1)

Metropolis Hastings's (MH) Algorithm [4]

The MH algorithm is an MCMC method used to sample configurations for computing physical observables in high-dimensional spaces.

- Starts from a configuration $\vec{\phi}$ and we suggest a $\vec{\phi} + \vec{\delta \phi}$.
- We calculate the difference of action *dS*.

$$dS = S[\vec{\phi} + \vec{\delta\phi}] - S[\vec{\phi}] = \vec{\delta\phi} \cdot \nabla S[\vec{\phi}] + \text{extra terms}$$
(1)

• We accept the move if:

 $u \ge min(1, exp(-dS))$, where $u \in [0,1]$ is an uniform random number

Residual Convolutional Neural Network (RCNN) approximation

• Training protocol: 200 independent samples, 180 training, 20 test, with batch size 24, for 50 epochs, with Mean Squared Error (MSE) loss function.

Dimitrios TZIVRAILIS (CEA Paris Saclay)

Predictions of the $\nabla S[\vec{\phi}]$ with the RCNN

Figure 3: Predictions of the Gradient of the lattice field with good accuracy.

Markov chain Trajectories

Figure 4: 2D Hypothetical Markov chain (MC) Trajectories

• Shared trajectory $min(1, exp(-\vec{\delta\phi} \cdot \nabla S[\vec{\phi}])) \simeq min(1, exp(-\vec{\delta\phi} \cdot \nabla S_{RCNN}[\vec{\phi}]))$

Markov chain Trajectories

Figure 4: 2D Hypothetical Markov chain (MC) Trajectories

 Shared trajectory *min*(1, *exp*(-δφ · ∇S[φ])) ≃ *min*(1, *exp*(-δφ · ∇S_{RCNN}[φ]))
 min(1, *exp*(-δφ · ∇S_{RCNN}[φ])), MH with RCNN

Markov chain Trajectories

Figure 4: 2D Hypothetical Markov chain (MC) Trajectories

Shared trajectory min(1, exp(-δφ · ∇S[φ])) ≃ min(1, exp(-δφ · ∇S_{RCNN}[φ]))
min(1, exp(-δφ · ∇S_{RCNN}[φ])), MH with RCNN
min(1, exp(-δφ · ∇S[φ])), MH

MH sampling configurations for observables with RCNN

Figure 5: Discrepancy of the computations of the observables, using the RCNN (green) and the Ground Truth (blue) algorithm.

What is the nature of the noise?

We trained the RCNN model using the MSE loss function:

$$\mathscr{L}_{\mathsf{MSE}} = \frac{1}{N} \sum_{i=1}^{N} \left\| \nabla S[\vec{\phi}]_i - \nabla \hat{S}[\vec{\phi}]_i \right\|_2^2 \tag{3}$$

MSE assumes that the residuals follow a Gaussian distribution because it corresponds to the maximum likelihood estimate under this assumption.

Figure 6: 1000 predictions for specific $\vec{\phi}$ of one component of the $\nabla S[\vec{\phi}]$

L.P.T.M.S

Penalty Technique [2]

The RCNN approximation can be written as a normal distribution around the true value.

$$abla \hat{S}_i - \nabla S_i = \varepsilon_i \sigma, \quad \varepsilon_i \sim \mathcal{N}(0, 1) \quad , \quad \forall i \in L$$
(4)

The introduced noise can be corrected with a penalty factor assuming that it follows a Gaussian distribution with variance σ^2 . Thus, the new acceptance criteria is:

$$u \ge min(1, e^{-\nabla \hat{S}_j \cdot \vec{\delta\phi} - \frac{\sigma^2(\delta\phi)^2}{2} - \dots}), \quad u \text{ is uniform random number } u \in [0, 1]$$
(5)

How can the effect of the noise be mitigated?

Ensemble technique plus penalty

We train N = 10 machines to predict the $\nabla S[\vec{\phi}]$ and we estimate the mean and the variance of the predictions with better precision trying to eliminate biases of the predictions.

$$\nabla \hat{S}_{mean} = E[\nabla \hat{S}_{N}], \quad \sigma_{penalty}^{2} = V[\nabla \hat{S}_{N}], \quad min(1, e^{-\nabla \hat{S}_{mean}} \cdot \vec{\delta\phi} - \frac{\sigma_{penalty}^{\delta(\delta\phi)^{2}}}{2} - \dots)$$

Figure 7: Penalty plus ensemble method can mitigate the effect of the noise, enabling correct sampling.

Conclusions

• High-accuracy machine learning approximations influence the sampling process in the MH algorithm.

Conclusions

• High-accuracy machine learning approximations influence the sampling process in the MH algorithm.

• We can mitigate the noise (Gaussian one) using a penalty technique and an ensemble method.

• Extend our work by tackling the Metropolis adjusted Langevin equation.

• Extend our work by tackling the Metropolis adjusted Langevin equation.

• Write an article to publish our approach and results.

• Extend our work by tackling the Metropolis adjusted Langevin equation.

• Write an article to publish our approach and results.

• Use more advanced techniques for uncertainty quantification (e.g. Bayesian neural networks.)

- [1] Dylan M. Anstine and Olexandr Isayev. "Machine Learning Interatomic Potentials and Long-Range Physics". In: The Journal of Physical Chemistry A 127.11 (2023). PMID: 36802360, pp. 2417–2431. DOI: 10.1021/acs.jpca.2c06778. eprint: https://doi.org/10.1021/acs.jpca.2c06778. URL: https://doi.org/10.1021/acs.jpca.2c06778.
- [2] D. M. Ceperley and M. Dewing. "The penalty method for random walks with uncertain energies". In: The Journal of Chemical Physics 110.20 (May 1999), 981230820. ISSN: 1089-7690. DOI: 10.1063/1.478034. URL: http://dx.doi.org/10.1063/1.478034.
- [3] Ruiqiang Guo et al. "Small-data-based machine learning interatomic potentials for graphene grain boundaries enabled by structural unit model". In: Carbon Trends 11 (2023), p. 100260. ISSN: 2667-0569. DOI: https://doi.org/10.1016/j.cartre.2023.100260. URL: https://www.sciencedirect.com/science/article/pii/S2667056923000159.
- [4] W. K. Hastings. "Monte Carlo sampling methods using Markov chains and their applications". In: *Biometrika* 57.1 (Apr. 1970), pp. 97–109. ISSN: 0006-3444. DOI: 10.1093/biomet/57.1.97. eprint: https://academic.oup.com/biomet/article-pdf/57/1/97/23940249/57-1-97.pdf. URL: https://doi.org/10.1093/biomet/57.1.97.
- [5] Andrew A. Peterson, Rune Christensen, and Alireza Khorshidi. "Addressing uncertainty in atomistic machine learning". en. In: *Physical Chemistry Chemical Physics* 19.18 (2017), pp. 10978–10985. ISSN: 1463-9076, 1463-9084. DOI: 10.1039/C7CP00375G. URL: https://xlink.rsc.org/?DOI=C7CP00375G (visited on 10/30/2024).

Thank you for your attention.