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Introduction

Machine learning models are used to approximate interatomic
potentials [1]

Figure 1: Energy and force predictions from NN approximation [3]

These models introduce epistemic uncertainty [5] to their
predictions due to their training protocols.
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Scientific Questions

What are the consequences of the noise to the numerical
simulations?

What is the nature of the noise?

How can the effect of the noise be mitigated? And how is
uncertainty Quantification important for this task?
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What are the consequences of the noise to the
numerical simulations?

The φ4 model

Figure 2: A ϕ⃗ configuration in the ferromagnetic phase (left) and a zoomed-in
view of the lattice structure (right)
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What are the consequences of the noise to the
numerical simulations?

Metropolis Hastings’s (MH) Algorithm [4]

The MH algorithm is an MCMC method used to sample configurations
for computing physical observables in high-dimensional spaces.

Starts from a configuration ϕ⃗ and we suggest a ϕ⃗+ δ⃗ϕ.

We calculate the difference of action dS.

dS = S[ϕ⃗+ δ⃗ϕ]−S[ϕ⃗] = δ⃗ϕ ·∇S[φ⃗ ]+extra terms (1)

We accept the move if:

u ≥min(1,exp(−dS)),where u ∈ [0,1] is an uniform random number
(2)
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What are the consequences of the noise to the
numerical simulations?

Residual Convolutional Neural Network (RCNN) approximation
of the ∇S[ϕ⃗]

Input, φ⃗ , configuration

Conv2D (1, 4) BatchNorm2D ReLU

Conv2D (4, 8) BatchNorm2D ReLU

Projection (4, 8)

Conv2D (8, 1)

Output, ∇⃗S[φ⃗ ]

Training protocol: 200 independent samples, 180 training, 20
test, with batch size 24, for 50 epochs, with Mean Squared Error
(MSE) loss function.
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How does noise affect simulations?

Predictions of the ∇S[ϕ⃗] with the RCNN

Figure 3: Predictions of the Gradient of the lattice field with good accuracy.
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How does noise affect simulations?

Markov chain Trajectories

Figure 4: 2D Hypothetical Markov chain (MC) Trajectories

Shared trajectory
min(1,exp(−δ⃗ϕ ·∇S[φ⃗ ]))≃ min(1,exp(−δ⃗ϕ ·∇SRCNN [φ⃗ ]))

min(1,exp(−δ⃗ϕ ·∇SRCNN [φ⃗ ])), MH with RCNN
min(1,exp(−δ⃗ϕ ·∇S[φ⃗ ])), MH
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How does noise affect simulations?

MH sampling configurations for observables with RCNN

Figure 5: Discrepancy of the computations of the observables, using the
RCNN (green) and the Ground Truth (blue) algorithm.
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What is the nature of the noise?

We trained the RCNN model using the MSE loss function:

LMSE =
1
N

N

∑
i=1

∥∥∥∇S[ϕ⃗]i −
ˆ∇S[ϕ⃗]i

∥∥∥2

2
(3)

MSE assumes that the residuals follow a Gaussian distribution
because it corresponds to the maximum likelihood estimate under this
assumption.

Figure 6: 1000 predictions for specific ϕ⃗ of one component of the ∇S[ϕ⃗]
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How can the effect of the noise be mitigated?

Penalty Technique [2]

The RCNN approximation can be written as a normal distribution
around the true value.

∇Ŝi −∇Si = εiσ , εi ∼ N (0,1) , ∀i ∈ L (4)

The introduced noise can be corrected with a penalty factor assuming
that it follows a Gaussian distribution with variance σ2. Thus, the new
acceptance criteria is:

u ≥ min(1,e−∇Ŝi ·δ⃗ϕ− σ2(δϕ)2
2 −...), u is uniform random number u ∈ [0,1]

(5)
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How can the effect of the noise be mitigated?

Ensemble technique plus penalty

We train N = 10 machines to predict the ∇S[ϕ⃗] and we estimate the
mean and the variance of the predictions with better precision trying to
eliminate biases of the predictions.

∇Ŝmean =E [∇ŜN ], σ
2
penalty =V [∇ŜN ], min(1,e−∇Ŝmean·δ⃗ϕ−

σ2
penalty (δϕ)2

2 −...)

Figure 7: Penalty plus ensemble method can mitigate the effect of the noise,
enabling correct sampling.
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Conclusions

High-accuracy machine learning approximations influence the
sampling process in the MH algorithm.

We can mitigate the noise (Gaussian one) using a penalty
technique and an ensemble method.
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Future works

Extend our work by tackling the Metropolis adjusted Langevin
equation.

Write an article to publish our approach and results.

Use more advanced techniques for uncertainty quantification (e.g.
Bayesian neural networks.)
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Thank you for your attention.
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