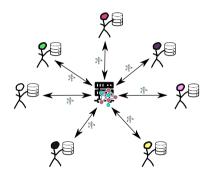
Convergence and Linear Speed-Up in Stochastic Federated Learning

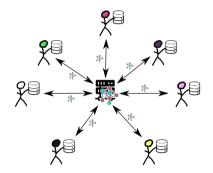
> Paul Mangold (CMAP, École polytechnique) Workshop "Fondements Mathématiques de l'IA"

> > March 25th, 2025

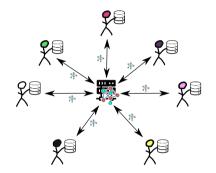
1

1





Collaborative optimization problem



Collaborative optimization problem

$$\min_{x\in\mathbb{R}^d}\frac{1}{N}\sum_{c=1}^N f_c(x) \quad , \quad f_c(x)=\mathbb{E}_Z[F_c(x;Z)]$$

Problem: data is heterogeneous, communication is expensive

I. Federated Averaging

Federated Averaging¹

$$x^{\star} \in \operatorname{arg\,min}_{x \in \mathbb{R}^d} \frac{1}{N} \sum_{c=1}^{N} \mathbb{E}_{Z}[F_c(x; Z)]$$

At each global iteration

- For c = 1 à N in parallel
 - Receive $x^{(t)}$, set $x_c^{(t,0)} = x^{(t)}$ - For h = 0 to H - 1 $x_c^{(t,h+1)} = x_c^{(t,h)} - \gamma \nabla F_c(x_c^{(t,h)}; Z_c^{(t,h+1)})$
- Aggregate local models

 $x^{(t+1)} = \frac{1}{N} \sum_{c=1}^{N} x_c^{(t,H)}$

¹B. McMahan et al. "Communication-efficient learning of deep networks from decentralized data". In: AISTATS. 2017.

Federated Averaging¹

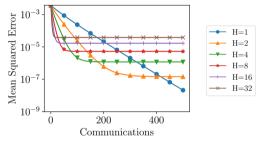
$$x^{\star} \in \operatorname{arg\,min}_{x \in \mathbb{R}^d} rac{1}{N} \sum_{c=1}^{N} \mathbb{E}_{Z}[F_c(x; Z)]$$

At each global iteration

- For c = 1 à N in parallel
 - Receive $x^{(t)}$, set $x_c^{(t,0)} = x^{(t)}$
 - For h = 0 to H 1 $x_c^{(t,h+1)} = x_c^{(t,h)} - \gamma \nabla F_c(x_c^{(t,h)}; Z_c^{(t,h+1)})$
- Aggregate local models

 $x^{(t+1)} = \frac{1}{N} \sum_{c=1}^{N} x_c^{(t,H)}$

With deterministic gradients:



¹B. McMahan et al. "Communication-efficient learning of deep networks from decentralized data". In: AISTATS. 2017.

Classical analyses of this algorithm (For *L*-smooth, *µ*-strongly convex functions)

Choose your favorite heterogeneity measure

• first-order¹:
$$\zeta = \frac{1}{N} \sum_{c=1}^{N} \left\| \nabla f_c(x^*) - \nabla f(x^*) \right\|^2$$

• second-order²: $\zeta = \frac{1}{N} \sum_{c=1}^{N} \left\| \nabla_c^2 f(x^*) - \nabla^2 f(x^*) \right\|^2$
• average drift³: $\zeta = \left\| \frac{1}{NH} \sum_{c=1}^{N} \sum_{h=0}^{H-1} \nabla f(x_c^{(h)}) - \nabla f(x^*) \right\|^2$

¹X. Lian et al. "Can decentralized algorithms outperform centralized algorithms? a case study for decentralized parallel SGD". In: NeurIPS (2017).

²A. Khaled and C. Jin. "Faster federated optimization under second-order similarity". In: arXiv (2022).

³J. Wang et al. "On the Unreasonable Effectiveness of Federated Averaging with Heterogeneous Data". In: TMLR (2024).

Classical analyses of this algorithm (For *L*-smooth, *µ*-strongly convex functions)

Choose your favorite heterogeneity measure

• first-order¹:
$$\zeta = \frac{1}{N} \sum_{c=1}^{N} \left\| \nabla f_c(x^*) - \nabla f(x^*) \right\|^2$$

• second-order²: $\zeta = \frac{1}{N} \sum_{c=1}^{N} \left\| \nabla_c^2 f(x^*) - \nabla^2 f(x^*) \right\|^2$
• average drift³: $\zeta = \left\| \frac{1}{NH} \sum_{c=1}^{N} \sum_{h=0}^{H-1} \nabla f(x_c^{(h)}) - \nabla f(x^*) \right\|^2$

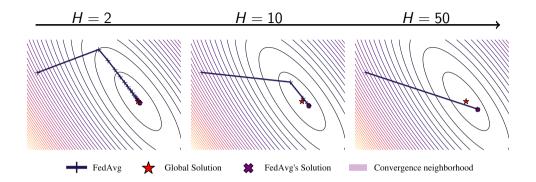
Show convergence to a neighborhood of x^*

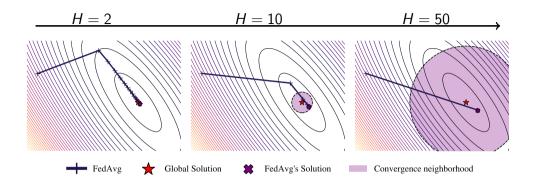
 $\|x^{(\mathcal{T})} - x^{\star}\|^2 \lesssim (1 - \gamma \mu)^{H\mathcal{T}} \|x^{(0)} - x^{\star}\|^2 + \chi(\gamma, \mathcal{H}, \zeta) \qquad \text{(for some function } \chi)$

¹X. Lian et al. "Can decentralized algorithms outperform centralized algorithms? a case study for decentralized parallel SGD". In: NeurIPS (2017).

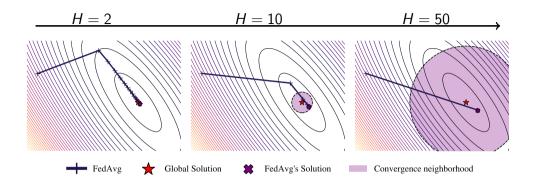
²A. Khaled and C. Jin. "Faster federated optimization under second-order similarity". In: arXiv (2022).

³J. Wang et al. "On the Unreasonable Effectiveness of Federated Averaging with Heterogeneous Data". In: TMLR (2024).



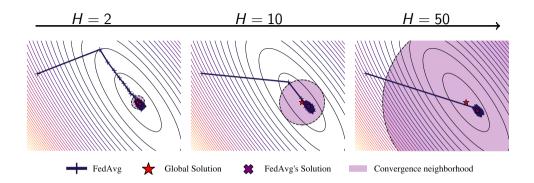


... but the bound is oblivious to problem's geometry



... but the bound is oblivious to problem's geometry

Remark: It seems that iterates converge in some way?



... but the bound is oblivious to problem's geometry

Remark: It seems that iterates converge in some way?

FedAvg (with stochastic gradients) converges!¹ (For thrice derivable, *L*-smooth, *µ*-strongly convex functions)

- FedAvg converges to a stationary distribution $\pi^{(\gamma,H)}$
 - denoting $x^{(t)} \sim \psi_{x^{(t)}}$, we have

$$\mathcal{W}_2(\psi_{\mathsf{x}^{(t)}};\pi^{(\gamma,H)}) \leq (1-\gamma\mu)^{Ht}\mathcal{W}_2(\psi_{\mathsf{x}^{(0)}};\pi^{(\gamma,H)})$$

– where \mathcal{W}_2 is the second order Wasserstein distance

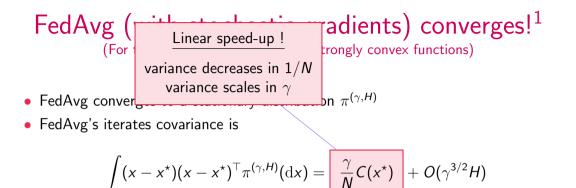
¹P. Mangold et al. "Refined Analysis of Constant Step Size Federated Averaging and Federated Richardson-Romberg Extrapolation". In: AISTATS. 2025.

FedAvg (with stochastic gradients) converges!¹ (For thrice derivable, *L*-smooth, *µ*-strongly convex functions)

- FedAvg converges to a stationary distribution $\pi^{(\gamma,H)}$
- FedAvg's iterates covariance is

$$\int (x-x^{\star})(x-x^{\star})^{\top}\pi^{(\gamma,H)}(\mathrm{d} x) = \left| \begin{array}{c} \frac{\gamma}{N} C(x^{\star}) \\ + O(\gamma^{3/2}H) \end{array} \right|$$

¹P. Mangold et al. "Refined Analysis of Constant Step Size Federated Averaging and Federated Richardson-Romberg Extrapolation". In: AISTATS. 2025.



¹P. Mangold et al. "Refined Analysis of Constant Step Size Federated Averaging and Federated Richardson-Romberg Extrapolation". In: AISTATS. 2025.

FedAvg (with stochastic gradients) converges!¹

(For thrice derivable, L-smooth, μ -strongly convex functions)

- FedAvg converges to a stationary distribution $\pi^{(\gamma,H)}$
- FedAvg's iterates covariance is
- We can now give an exact expansion of the bias

$$\int x \pi^{(\gamma,H)}(\mathrm{d}x) = x^* + \left[\frac{\gamma(H-1)}{2N} \sum_{c=1}^N \nabla^2 f(x^*)^{-1} (\nabla^2 f_c(x^*) - \nabla^2 f(x^*)) \nabla f_c(x^*) - \frac{\gamma}{2N} \nabla^2 f(x^*)^{-1} \nabla^3 f(x^*) A^{-1} C(x^*) + O(\gamma^{3/2} H) \right]$$

¹P. Mangold et al. "Refined Analysis of Constant Step Size Federated Averaging and Federated Richardson-Romberg Extrapolation". In: AISTATS. 2025.

FedAvg (with stochastic gradients) converges¹¹ Heterogeneity bias th. u-s Stochasticity bias vanishes when $\nabla^2 f_c(x^*) = \nabla^2 f(x^*)$ or when $\nabla f_c(x^*) = \nabla f(x^*)$ tribution $A = I \otimes \nabla^2 f(x^*) + \nabla^2 f(x^*) \otimes I$ $C(x^*)$ is ∇F^Z 's covariance at x^* I CURVE S ILCIALES COVALIANCE IS • We can now give an exact expansion of the bias $\int x \pi^{(\gamma,H)}(\mathrm{d}x) = x^* + \left| \frac{\gamma(H-1)}{2N} \sum_{i=1}^{N} \nabla^2 f(x^*)^{-1} (\nabla^2 f_c(x^*) - \nabla^2 f(x^*)) \nabla f_c(x^*) \right|$ $-\frac{\gamma}{2N}\nabla^2 f(x^*)^{-1}\nabla^3 f(x^*)A^{-1}C(x^*) + O(\gamma^{3/2}H)$

¹P. Mangold et al. "Refined Analysis of Constant Step Size Federated Averaging and Federated Richardson-Romberg Extrapolation". In: AISTATS. 2025.

II. Correcting heterogeneity: Scaffold

Scaffold¹
$$x^* \in \arg\min_{x \in \mathbb{R}^d} \frac{1}{N} \sum_{c=1}^N \mathbb{E}_Z[F_c(x; Z)]$$

At each global iteration

• For c = 1 to N in parallel

- Receive
$$x^{(t)}$$
, set $x_c^{(t,0)} = x^{(t)}$

- For h = 0 to H - 1

$$x_{c}^{(t,h+1)} = x_{c}^{(t,h)} - \gamma \big(\nabla F_{c}(x_{c}^{(t,h)}; Z_{c}^{(t,h+1)}) + \boldsymbol{\xi}_{c}^{(t)} \big)$$

• Aggregate models, update control variates

$$x^{(t+1)} = \frac{1}{N} \sum_{c=1}^{N} x_c^{(t,H)}$$

 $\xi_{c}^{(t+1)} = \xi_{c}^{(t)} + \frac{1}{\gamma H} (\theta_{c}^{t,H} - \theta^{(t+1)})$

¹S. P. Karimireddy et al. "Scaffold: Stochastic controlled averaging for federated learning". In: ICML. 2020.

Scaffold¹
$$x^* \in \arg \min_{x \in \mathbb{R}^d} \frac{1}{N} \sum_{c=1}^N \mathbb{E}_Z[F_c(x; Z)]$$

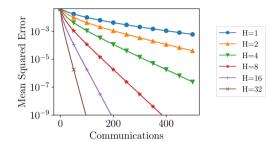
At each global iteration

- For c = 1 to N in parallel
 - Receive $x^{(t)}$, set $x_c^{(t,0)} = x^{(t)}$
 - For h = 0 to H 1

 $x_{c}^{(t,h+1)} = x_{c}^{(t,h)} - \gamma \big(\nabla F_{c}(x_{c}^{(t,h)}; Z_{c}^{(t,h+1)}) + \boldsymbol{\xi}_{c}^{(t)} \big)$

• Aggregate models, update control variates $x^{(t+1)} = \frac{1}{N} \sum_{c=1}^{N} x_c^{(t,H)}$

$$\xi_{c}^{(t+1)} = \xi_{c}^{(t)} + \frac{1}{\gamma H} (\theta_{c}^{t,H} - \theta^{(t+1)})$$



 \rightarrow No more heterogeneity bias!

¹S. P. Karimireddy et al. "Scaffold: Stochastic controlled averaging for federated learning". In: ICML. 2020.

Scaffold also converges !1

(For *L*-smooth, μ -strongly convex functions with $\nabla^3 f(x)$ bounded by *Q*)

- Scaffold converges if $\gamma HL \leq 1$, towards a distribution $\pi^{(\gamma,H)}$
 - denoting $\mathbf{x}^{(t)} \sim \psi_{\mathbf{x}^{(t)}}$, we have

$$\mathcal{W}_2(\psi_{\mathsf{x}^{(t)}};\pi^{(\gamma,H)}) \leq (1-\gamma\mu)^{Ht}\mathcal{W}_2(\psi_{\mathsf{x}^{(0)}};\pi^{(\gamma,H)})$$

– where \mathcal{W}_2 is the second order Wasserstein distance

¹P. Mangold et al. "Scaffold with Stochastic Gradients: New Analysis with Linear Speed-Up". In: arxiv preprint. 2025.

Scaffold also converges !1

(For *L*-smooth, μ -strongly convex functions with $\nabla^3 f(x)$ bounded by *Q*)

- Scaffold converges if $\gamma HL \leq 1$, towards a distribution $\pi^{(\gamma,H)}$
- Scaffold's variance is close to FedAvg's variance

$$\int (x - x^{\star})(x - x^{\star})^{\top} \pi^{(\gamma, H)}(\mathrm{d}x) = \frac{\gamma}{N} C(x^{\star}) + O(\gamma^{3/2})$$

¹P. Mangold et al. "Scaffold with Stochastic Gradients: New Analysis with Linear Speed-Up". In: arxiv preprint. 2025.

• Scaffold converges in 1/N• Scaffold converges in 1/N• Scaffold converges in 1/N• Scaffold's variance is close to regroup s variance

$$\int (x-x^{\star})(x-x^{\star})^{\top}\pi^{(\gamma,H)}(\mathrm{d} x) = \boxed{\frac{\gamma}{N}C(x^{\star})} + O(\gamma^{3/2})$$

¹P. Mangold et al. "Scaffold with Stochastic Gradients: New Analysis with Linear Speed-Up". In: arxiv preprint. 2025.

Scaffold also converges !1

(For *L*-smooth, μ -strongly convex functions with $\nabla^3 f(x)$ bounded by *Q*)

- Scaffold converges if $\gamma HL \leq 1$, towards a distribution $\pi^{(\gamma,H)}$
- Scaffold's variance is close to FedAvg's variance
- Scaffold still has some bias

$$\int x \pi^{(\gamma,H)}(\mathrm{d}x) = x^* - \left[\frac{\gamma}{2N} \nabla^2 f(x^*)^{-1} \nabla^3 f(x^*) A^{-1} C(x^*)\right] + O(\gamma^{3/2})$$

¹P. Mangold et al. "Scaffold with Stochastic Gradients: New Analysis with Linear Speed-Up". In: arxiv preprint. 2025.

Scaffold also converges !¹

Stochasticity bias remains

• Scaffold converges if $\gamma HL \leq 1$, towards a d

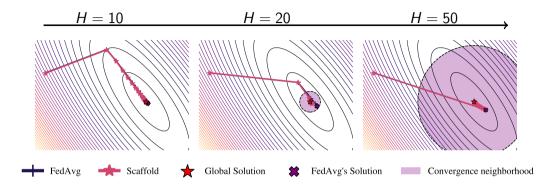
(For L-smooth, μ -strongly convex function

$$A = I \otimes \nabla^2 f(x^*) + \nabla^2 f(x^*) \otimes I$$
$$C(x^*) \text{ is } \nabla F^Z \text{'s covariance at } x^*$$

- Scaffold's variance is close to FedAvg's variance
- Scaffold still has some bias

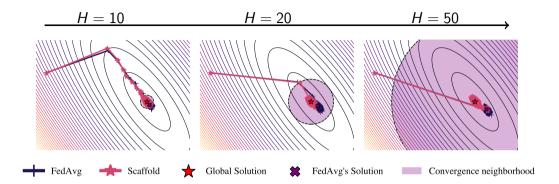
$$\int x \pi^{(\gamma,H)}(\mathrm{d}x) = x^* - \frac{\gamma}{2N} \nabla^2 f(x^*)^{-1} \nabla^3 f(x^*) A^{-1} C(x^*) + O(\gamma^{3/2})$$

¹P. Mangold et al. "Scaffold with Stochastic Gradients: New Analysis with Linear Speed-Up". In: arxiv preprint. 2025.



Scaffold converges to the right point

... and its variance is similar to FedAvg!



Scaffold converges to the right point

... and its variance is similar to FedAvg!

New Convergence Rate for Scaffold (For *L*-smooth, μ -strongly convex functions with $\nabla^3 f(x)$ bounded by *Q*)

$$\mathbb{E}\left[\|x^{(T)} - x^{\star}\|^{2}\right] \lesssim \left(1 - \frac{\gamma\mu}{4}\right)^{HT} \left\{\|x^{(0)} - x^{\star}\|^{2} + 2\gamma^{2}H^{2}\zeta^{2} + \frac{\sigma_{\star}^{2}}{L\mu}\right\} \\ + \frac{\gamma}{N\mu}\sigma_{\star}^{2} + \frac{\gamma^{3/2}Q}{\mu^{5/2}}\sigma_{\star}^{3} + \frac{\gamma^{3}HQ^{2}}{\mu^{3}}\sigma_{\star}^{4}$$

where

•
$$\sigma_{\star}^2 = \mathbb{E}\left[\frac{1}{N}\sum_{c=1}^{N} \|\nabla F_c^Z(x^{\star}) - \nabla f_c(x^{\star})\|^2$$
 is the variance at x^{\star}
• $\zeta^2 = \frac{1}{N}\sum_{c=1}^{N} \|\nabla f_c^Z(x^{\star})\|^2$ measures gradient heterogeneity

Linear Speed-Up!

As long as N is not too large, one can obtain $\mathbb{E}\left[\|x^{(T)} - x^{\star}\|^2\right] \leq \epsilon^2$ with

$$\#$$
grad per client $= \widetilde{O}\Big(rac{\sigma_{\star}^2}{N\mu^2\epsilon^2}\log\left(rac{1}{\epsilon}
ight)\Big)$

Conclusion

- FedAvg and Scaffold converge (even with stochastic gradients)
- This allows to derive new analyses for these problems, with exact first-order expression for bias
- And we proved that Scaffold has:
 - variance similar to FedAvg's variance
 - *linear speed-up* in the number of clients!!

Thank you!

Check the papers:

- P. Mangold et al. "Refined Analysis of Constant Step Size Federated Averaging and Federated Richardson-Romberg Extrapolation". In: AISTATS. 2025
- P. Mangold et al. "Scaffold with Stochastic Gradients: New Analysis with Linear Speed-Up". In: arxiv preprint. 2025

Find this presentation on my website:

• https://pmangold.fr/research.php?page=talks