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Generative AI BOOM
State-of-the-art AI by the end of Mar 2025

ChatGPT (OpenAI), FLUX (Black Forest Labs), AlphaFold (DeepMind), MatterGen (MSR) 1

SOTA GenAI models are based on 
(Linear) Transformers & RNNs!



Ask LLMs for Decision Making?

Users are hardly convinced by high accuracy only!

They want:
• Recommended decision suggestions with convincing reasoning processes
• Risk and uncertainty analysis for the recommended solutions
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Bayesian Inference

𝑃 𝑊| 𝑑𝑎𝑡𝑎 =
𝑃 𝑊 𝑃 𝑑𝑎𝑡𝑎 𝑊)

𝑃 𝑑𝑎𝑡𝑎

• 𝑃 𝑊 : prior distribution 
• 𝑃 𝑑𝑎𝑡𝑎 𝑊): likelihood of 𝑊 given 𝑑𝑎𝑡𝑎
• 𝑃 𝑊| 𝑑𝑎𝑡𝑎 : posterior distribution of 𝑊 given 𝑑𝑎𝑡𝑎
• 𝑃 𝑑𝑎𝑡𝑎 : marginal likelihood/model evidence

𝑃 𝑑𝑎𝑡𝑎 = ∫ 𝑃 𝑊 𝑃 𝑑𝑎𝑡𝑎 𝑊)

𝜋 𝑊 = 𝑝(𝑊|𝑑𝑎𝑡𝑎)

Image courtesy of Sebastian Nowozin
Re-use of the image for any other purpose is not allowed 3



Transformer + Weight-Space Bayesian Inference?
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Major Challenge: running accurate Bayesian inference on billions of weights!
(not going to be solved anytime soon…) 

Tran et al. Plex: Towards Reliability using Pretrained Large Model Extensions. arXiv 2207.07411

ViT-Plex-L (325M) T5-Plex-L (880M)



Weight-Space → Function-Space
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• 𝑊 ∼ 𝑞 𝑊 ⇔ 𝑓 ∼ 𝑞!""(𝑓)

• In practice we care more about predictive mean & variance
 (which is quantifying the function-space behaviour)



Gaussian Processes Prior
Prior over functions: Gaussian distribution over 
infinite number of random variables indexed by  

Fig credit: Richard Wilkinson’s GPSS 2019 lecture 6

(marginal)



Sparse Variational Gaussian Process (SVGP) 101

Prior	conditional:	

Approx	Posterior:

Tunable by optimizing the ELBO

Titsias. Variational Learning of Inducing Variables in Sparse Gaussian Processes. AISTATS 2009

⇒ Prior:	

Exact posterior inference requires inverting 𝐊𝐗𝐗 which has 𝑂(𝑁") cost!

New Cost: 𝑂(𝑁𝑀# +𝑀")

Inducing Variables: ⇒ 	 Augmented	Prior:	
(use 𝑀 inducing inputs with inputs 𝐙 = [𝑧$, … , 𝑧%] in 𝑥 space)
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Titsias. Variational Learning of Inducing Variables in Sparse Gaussian Processes. AISTATS 2009
Damianou et al. Deep Gaussian Processes. AISTATS 2013
Wilson et al. Deep Kernel Learning. AISTATS 2016
Immer et al. Improving Predictions of Bayesian Neural Nets via Local Linearization. AISTATS 2021

(Same as prior) (variational)

Sparse Variational Gaussian Process (SVGP) 101

Major issue re scaling up to high-dims: Feature Learning
• Deep Kernel Learning
• Last-layer GP (linearising pre-trained NNs + Laplace)
• Deep GPs  
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Q2: Can SOTA deep learning architectures 
inspire new advances in scalable GPs?

Q1: Can GPs inspire ideas for uncertainty 
quantification in SOTA deep learning?



Idea 1: Leverage probabilistic models to improve the reliability 
of deep sequence models (e.g., reliable uncertainty)

Sparse Gaussian Process Attention - a Deep GP 
tailored to Transformer architectures

Chen and Li. ICLR 2023
Calibrating Transformers via Sparse Gaussian Processes. 
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Wenlong Chen



Titsias. Variational Learning of Inducing Variables in Sparse Gaussian Processes. AISTATS 2009

(Same as prior) (variational)

(reparameterization)

Sparse Variational Gaussian Process (SVGP) 101
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Attention in Transformers

Vaswani et al. Attention is all you need. NeurIPS 2017
Tsai et al. Transformer dissection: A unified understanding for transformer’s attention via the lens of kernel. EMNLP 2019

• Single head attention
Attention matrix

• Replace attention matrix with kernel matrix:

q k v
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Kernel Attention As The Mean Of An SVGP

Kernel Attention: Recall posterior mean of SVGP:

Equivalent by identifying:
q (queries) = x (queried input locations)
K (keys) = z (inducing locations)
v (values) = a (variational parameters)

similarity between      and

Chen and Li. Calibrating Transformers via Sparse Gaussian Processes. ICLR 2023 13



Adding Covariance function to Transformer

Chen and Li. Calibrating Transformers via Sparse Gaussian Processes. ICLR 2023 14



Amortized Inference for self-attention

Chen and Li. Calibrating Transformers via Sparse Gaussian Processes. ICLR 2023
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Computation reduction for self-attention

Chen and Li. Calibrating Transformers via Sparse Gaussian Processes. ICLR 2023
Cheng and Boots. Variational Inference for Gaussian Process Models with Linear Complexity. NIPS 2017
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In-distribution Calibration

Task: Images classification on CIFAR10 with ViT
Baselines:

● “Single-model” methods vs SGPA:
○ Bayesian:  MFVI, MCD, KFLLLA, SNGP
○ Frequentist: MLE, TS

● Deep Ensemble (DE) vs SGPAE

Metrics (prefer lower values):
● Negative log-likelihood (NLL), i.e. cross-entropy 
● Expected calibration error (ECE)
● Maximum calibration error (MCE)

Guo et al. On calibration of modern neural networks. ICML 2017 17



In-distribution Calibration (cont.)

Chen and Li. Calibrating Transformers via Sparse Gaussian Processes. ICLR 2023 18



OOD Robustness

Hendrycs et al. Benchmarking Neural Network Robustness to Common Corruptions and Perturbations. ICLR 2019 19



OOD Robustness

Chen and Li. Calibrating Transformers via Sparse Gaussian Processes. ICLR 2023 20



OOD Detection

In-distribution data: CIFAR10
Out-of-distribution data: CIFAR100, SVHN, Mini-IMAGENET

E.g. predictive entropy

Metrics (prefer higher values):
● AUROC: area under ROC curve
● AUPR: area under ROC curve

Chen and Li. Calibrating Transformers via Sparse Gaussian Processes. ICLR 2023 21



Chen and Li. Calibrating Transformers via Sparse Gaussian Processes. ICLR 2023 22

OOD Detection



Takeaway for SGPA

● SGPA achieves better performance under distribution shift

● Kernel attention is equivalent to computing posterior mean 
of a SVGP

● SGPA performs Bayesian inference in the space of attention 
output via SVGP

● SGPA achieves improved uncertainty calibration while 
maintaining competitive predictive accuracy

Chen and Li. Calibrating Transformers via Sparse Gaussian Processes. ICLR 2023 23



Idea 2: 
Exploit the inductive bias of deep sequence models (e.g., 
long-range memory capability) to improve GPs

HiPPO-SVGP - an online SVGP with interdomain inducing 
variables constructed with HiPPO (an RNN architecture)

Chen et al. ArXiv 2025
Recurrent Memory for Online 
Interdomain Gaussian Processes.

Predecessor of S4 & Mamba

Wenlong Chen* Naoki Kiyohara* Harrison Bo Hua Zhu*
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HiPPO - An Online Representation of Sequential Data

Legendre polynomial 

“Memorising” a function via projection to finite basis:

Given	𝑓(𝑥), 𝑥 ∈ [−1,1],

u – coefficients of 𝑓 projected to 𝑠𝑝𝑎𝑛 𝑃# 𝑥 #$%
"&'

Gu et al. Recurrent Memory with Optimal Polynomial Projections. NeurIPS 2020

- Can be viewed as a finite-dim memory for a 
function (infinite-dim object)

25

Fig: wikipedia



HiPPO - An Online Representation of Sequential Data

“Memorising” a function via projection to finite basis:

Given	𝑓(𝑥), 𝑥 ∈ [0, 𝑡],

𝑢#
()) – coefficients of 𝑓 projected to 𝑠𝑝𝑎𝑛 𝑃#

()) 𝑥
#$%

"&'
 

Gu et al. Recurrent Memory with Optimal Polynomial Projections. NeurIPS 2020

Rescaled Legendre polynomial 

0 t

1/t

0
- Can be viewed as a finite-dim memory for a 

function (infinite-dim object)
- Memory “evolves” when 𝑡 increases!
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𝑥

𝑓(𝑥)

𝑡0

1
𝑡 𝜔(")(𝑥)

𝑥
𝑔$(")(𝑥)

𝑡 + Δ𝑡
𝜔("%&")(𝑥)

𝑔$("%&")(𝑥)

𝑢S(T)= ∫UV
V
𝑓(𝑥)𝑔S(T)(𝑥)𝜔(T)(𝑥)𝑑𝑥

• 𝑢!: 𝑛-th coefficient
• 𝑓(𝑥): Target function for 𝑥 ∈ [0,+∞)
• 𝑔!

(#)(𝑥): Normalised & scaled 𝑛-th basis
• 𝜔(#)(𝑥): Normalised measure (mask)

HiPPO - An Online Representation of Sequential Data

Gu et al. Recurrent Memory with Optimal Polynomial Projections. NeurIPS 2020

27
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The evolution of 𝐮(T) = [𝑢X
(T), … , 𝑢YUZ

(T) ] over time 𝑡 follows linear ODE:

𝑑
𝑑𝑡 𝐮

(") = 𝐴(𝑡)𝐮(") + 𝐵(𝑡)𝑓(𝑡)

We can obtain the coefficients 𝐮(") as a summary of the function up to time 
t in an online manner.

Input sequence to memorize

Specific matrix and vector corresponding to function basis and measure

Gu et al. Recurrent Memory with Optimal Polynomial Projections. NeurIPS 2020

HiPPO - An Online Representation of Sequential Data
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Sequential update method for polynomial coefficients

2
9

Selecting a 
Polynomial Basis

• Legendre

• Fourier

.

Rescaling to Target 
Range

Formulating 
Coefficient Dynamics

-1 1

0 T

Data

Polynomial basisetc.

𝑓(𝑥, 𝑡) ≃ ∑
!"#

$%&
𝑐!(𝑡)𝑃!(𝑥, 𝑡)

𝑢!∝ ⟨𝑓'(, 𝑃!⟩

𝐮(𝑡) =

𝑢#(𝑡)
𝑢&(𝑡)
⋮

𝑢$%&(𝑡)
Online 
Representation via 
ODE/recurrence

Gu et al. Recurrent Memory with Optimal Polynomial Projections. NeurIPS 2020 29



Extending HiPPO to 𝑓 ∼ GP(0,𝑘)

The m-th polynomial coefficient 𝑢'(")= ∫𝑓(𝑥)𝑔'(")(𝑥)𝜔(")(𝑥)𝑑𝑥

𝑝(𝐮)    is now multivariate Gaussian since 𝑓 is a GP.
We treat	𝐮 as inducing variables of SVGP.

This is an instance of so-called “Interdomain GPs”

Turning deterministic 𝑓 into stochastic 𝑓 ∼ GP(0, 𝑘)
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Sparse Variational Gaussian Process (SVGP) 101

Prior	conditional:	

Approx	Posterior:

Tunable by optimizing the ELBO

Titsias. Variational Learning of Inducing Variables in Sparse Gaussian Processes. AISTATS 2009

⇒ Prior:	

Exact posterior inference requires inverting 𝐊𝐗𝐗 which has 𝑂(𝑁") cost!

Inducing Variables: ⇒ 	 Augmented	Prior:	
(use 𝑀 inducing inputs with inputs 𝐙 = [𝑧$, … , 𝑧%] in 𝑥 space)

New Cost: 𝑂(𝑁𝑀# +𝑀")
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Interdomain Gaussian Process 101

Tunable by optimizing the ELBO

Lázaro-Gredilla and Figueiras-Vidal. Inter-domain Gaussian Processes for Sparse Inference using Inducing Features. NIPS 2009

⇒ Prior:	

Exact posterior inference requires inverting 𝐊𝐗𝐗 which has 𝑂(𝑁") cost!

⇒ 	 Augmented	Prior:	

(use 𝑀 basis functions 𝐏(() 𝑥 ≔ [𝑃#
(() 𝑥 ,… , 𝑃+%&

(() (𝑥)])

New Cost: 𝑂(𝑁𝑀# +𝑀") 
+ cost of computing the integrals

Inducing Variables:

Prior	conditional:	

Approx	Posterior	(till	t):

32



Computing Prior Cross-Covariance 

𝑑
𝑑𝑡

𝐊𝐟𝐮
($)

&
= 𝐴 𝐊𝐟𝐮

($)

&
+ 𝐵𝑘(𝑥&, 𝑡)

The same formula as HiPPO

Can be updated recurrently as a HiPPO ODE
Chen et al. Recurrent Memory for Online Interdomain Gaussian Processes. Preprint 2025 33



Computing Prior Inducing-Covariance

• Use Random Fourier Features (RFF) to separate the double integral into product of two 
single intergal, each of them can evolve as a HiPPO ODE.

Chen et al. Recurrent Memory for Online Interdomain Gaussian Processes. Preprint 2025

• Directly Take time derivative wrt t to obtain an ODE of  a different form.

Two options to compute it (Both methods can be reduced to simple ODE reccurence):

34



Experiment - Online Regression

• Solar Irradiance (Lean, J. (2004). Solar irradiance reconstruction. NOAA/NGDC.)
• Test Set: Five segments of length 20 removed for testing.
• Online Learning: Data split into 10 sequential tasks. Revisit of the data from past 

tasks is not allowed.

35Bui et al. Streming Sparse Gaussian Process Approximations. NeurIPS 2017



Visualisation of the Results

• Online SGPR (baseline): gradually forgets earlier segments.
• HiPPO (ours): can adapt to new data little loss  of past memories.

36
Bui et al. Streming Sparse Gaussian Process Approximations. NeurIPS 2017
Chen et al. Recurrent Memory for Online Interdomain Gaussian Processes. Preprint 2025



Quantitative Comparison

• Root Mean Square Error (RMSE) & Negative Log Probability Density (NLPD)

• OHSGPR achieves Long-range memory preservation
• OSGPR forgets…
• OVFF (Fourier basis) requires integration over [0, 𝑇HIJ] (non-adaptive) 

37
Bui et al. Streming Sparse Gaussian Process Approximations. NeurIPS 2017
Hensman et al. Variational Fourier Features for Gaussian Processes. JMLR 2018
Chen et al. Recurrent Memory for Online Interdomain Gaussian Processes. Preprint 2025



Quantitative Comparison

• Significant speed-up (wall-clock time in seconds, total train + test for all 10 tasks):

Key advantage in run-time: 
No need to optimise inducing inputs + inducing basis functions evolve overtime.

38
Bui et al. Streming Sparse Gaussian Process Approximations. NeurIPS 2017
Hensman et al. Variational Fourier Features for Gaussian Processes. JMLR 2018
Chen et al. Recurrent Memory for Online Interdomain Gaussian Processes. Preprint 2025



Takeaway for HiPPO SVGP

• We extended HiPPO memory mechanism from deterministic signals 
to stochastic GPs.

• The resulting HiPPO-SVGP is a natural interdomain GP suitable for 
online learning with time variang polynomial-based inducing variables.

• Online HiPPO-SVGP outperforms standard online SVGP in terms of 
long-term memory preservation in online setting.
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Bonus: beyond 1-D inputs
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Future Work 1: Keep Scaling Up

• 𝑂(𝑇[) complexity even for vanilla Transformers
• Inherited by mean of SGPA

• Decoupled approximation allows further improvements here
• Need to integrate with the latest GPU-aware optimization for attention

• Deep Learning practitioners don’t like matrix inversions
• Both of our solutions need 𝐊𝐮𝐮L𝟏
• Can we develop a matrix-inversion-free version?
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Here’s this patient’s health record:
…
Could you summarise it for me?

Here are the conditions of this construction site:
…
Could you tell me what the potential safety issues are?

Here’s a summary of the patient’s health record you requested:
[point 1] with x% confidence (breakdown quantities)
…

Here’s potential safety issues that need to be look after:
[point 1] with x% confidence (breakdown quantities)
…

Desiderata 

We care more about quantifying the 
uncertainty estimates based on the 

input context!
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Future Work 2: 
Quantifying uncertainty based on input prompts
• Think about next word prediction as predictive Bayesian inference:

• On-going work:
• Uncertainty-aware LLM fine-tuning 
• based on e.g., our GP-inspired techniques

• Approximate Bayesian predictive inference via smart prompting

Posterior of the function based on the first t tokens

• Here uncertainty is based on unknown knowledge beyond 𝑥N:O and LLM prior

𝑝 𝑥T\Z 𝑥Z:T = ∫ 𝑝 𝑥T\Z 𝑓 𝑝 𝑓 𝑥Z:T 𝑑𝑓
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SGPA 
Chen and Li, ICLR 2023

Wenlong Chen Naoki Kiyohara Harrison Bo Hua Zhu
HiPPO-SVGP

Chen et al. ArXiv 2025

Questions? Ask now, or contact
yingzhen.li@imperial.ac.ukThank You!

Innovations are from my great students, errors are mine :)

mailto:yingzhen.li@imperial.ac.uk

