Catégorie
Recherche
06.10.20
L'écosystème DATAIA à NeurIPS 2020
© NeurIPS
L'écosystème DATAIA à NeurIPS 2020
- Aller plus loin
- Actualités sur le même thème
38 papiers de recherche issus des chercheurs du périmètre de l'Institut DATAIA, ont été acceptés à la conférence NeurIPS 2020.
Corps de texte
NeurIPS (Neural Information Processing Systems), largement considérée comme la plus grande conférence de recherche sur l'intelligence artificielle et l'apprentissage statistique au monde, a publié la liste des 1900 articles acceptés à sa trente-quatrième édition.
Plus de 30 d'entre eux incluent des auteurs qui font partie de l'écosystème DATAIA :
- A Bandit Learning Algorithm and Applications to Auction Design // Kim Thang Nguyen (IBISC, University Paris-Saclay)
- A new inference approach for training shallow and deep generalized linear models of noisy interacting neurons // Gabriel Mahuas (ENS Paris-Saclay; IST Austria; LPENS) · Giulio Isacchini (Max Planck Institute for Dynamics and Selforganisation) · Olivier Marre (Institut de la vision) · Ulisse Ferrari (Universite Pier et Marie Curie) · Thierry Mora (ENS)
- A Stochastic Path Integral Differential EstimatoR Expectation Maximization Algorithm // Gersende Fort (CNRS) · Eric Moulines (Ecole Polytechnique) · Hoi-To Wai (The Chinese University of Hong Kong)
- Correspondence learning via linearly-invariant embedding // Riccardo Marin (University of Verona) · Marie-Julie Rakotosaona (Ecole Polytechnique) · Simone Melzi (University of Verona) · Maks Ovsjanikov (Ecole polytechnique)
- Deep Statistical Solvers // Balthazar Donon (RTE R&D / Université Paris-Saclay) · Zhengying Liu (Inria/U. Paris-Sud) · Wenzhuo LIU (Inria Paris Saclay) · Isabelle Guyon (U. Paris-Saclay & ChaLearn) · Antoine Marot (RTE) · Marc Schoenauer (INRIA)
- Efficient Topological Layer based on Persistent Landscapes // Kwangho Kim (Carnegie Mellon University) · Jisu Kim (Inria Saclay) · Manzil Zaheer (Google Research) · Joon Kim (Carnegie Mellon University) · Frederic Chazal (INRIA) · Larry Wasserman (Carnegie Mellon University)
- Entropic Optimal Transport between (Unbalanced) Gaussian Measures has a Closed Form (oral) // Hicham Janati (Inria / ENSAE) · Boris Muzellec (ENSAE, Institut Polytechnique de Paris) · Gabriel Peyré (CNRS and ENS) · Marco Cuturi (Google Brain & CREST - ENSAE)
- Estimation and Imputation in Probabilistic Principal Component Analysis with Missing Not At Random Data // Aude Sportisse (Sorbonne University, Ecole Polytechnique) · Claire Boyer (LPSM, Sorbonne Université) · Julie Josse (CMAP / CNRS)
- Exploiting Higher Order Smoothness in Derivative-free Optimization and Continuous Bandits // Arya Akhavan (ENSAE - IIT) · Massimiliano Pontil (IIT & UCL) · Alexandre Tsybakov (CREST, ENSAE)
- Fair regression via plug-in estimator and recalibration with statistical guarantees // Evgenii Chzhen (Université Paris-Saclay) · Christophe Denis (Universite Paris Est) · Mohamed Hebiri (Université Gustave Eiffel) · Luca Oneto (University of Genoa) · Massimiliano Pontil (IIT)
- Fair regression with Wasserstein barycenters // Evgenii Chzhen (Université Paris-Saclay) · Christophe Denis (Universite Paris Est) · Mohamed Hebiri (Université Gustave Eiffel) · Luca Oneto (University of Genoa) · Massimiliano Pontil (IIT)
- Finite Contiuum-Armed Bandits // Solenne Gaucher (Université Paris-Saclay)
- Fixed-Support Wasserstein Barycenters: Computational Hardness and Fast Algorithm // Tianyi Lin (UC Berkeley) · Nhat Ho (University of Texas at Austin) · Xi Chen (New York University) · Marco Cuturi (Google Brain & CREST - ENSAE) · Michael Jordan (UC Berkeley)
- Hard Shape-Constrained Kernel Machines // Pierre-Cyril Aubin-Frankowski (MINES ParisTech) · Zoltan Szabo (Ecole Polytechnique)
- Hausdorff Dimension, Heavy Tails, and Generalization in Neural Networks // Umut Simsekli (Institut Polytechnique de Paris/ University of Oxford) · Ozan Sener (Intel Labs) · George Deligiannidis (Oxford) · Murat Erdogdu (University of Toronto)
- Heavy-tailed Representations, Text Polarity Classification & Data Augmentation // Hamid Jalalzai (Télécom ParisTech) · Pierre Colombo (Telecom ParisTech) · Chloé Clavel (Telecom-ParisTech, Paris, France) · Eric Gaussier (Université Joseph Fourier, Grenoble) · Giovanna Varni (Telecom ParisTec) · Emmanuel Vignon (IBM) · Anne Sabourin (LTCI, Telecom ParisTech, Université Paris-Saclay)
- Information Maximization for Few-Shot Learning // Malik Boudiaf (Ecole de Technologie Superieure) · Imtiaz Ziko (Ecole de technologie superieure (ETS)) · Jérôme Rony (ÉTS Montréal) · Jose Dolz (ETS Montreal) · Pablo Piantanida (CentraleSupélec - Mila) · Ismail Ben Ayed (ETS Montreal)
- Learning to solve TV regularised problems with unrolled algorithms // Hamza Cherkaoui (CEA) · Jeremias Sulam (Johns Hopkins University) · Thomas Moreau (Inria)
- Learning with Differentiable Pertubed Optimizers // Quentin Berthet (Google Brain) · Mathieu Blondel (Google) · Olivier Teboul (Ecole Centrale Paris) · Marco Cuturi (Google Brain & CREST - ENSAE) · Jean-Philippe Vert () · Francis Bach (INRIA - Ecole Normale Superieure)
- Linear Time Sinkhorn Divergences using Positive Features // Meyer Scetbon (CREST-ENSAE) · Marco Cuturi (Google Brain & CREST - ENSAE)
- Locally private non-asymptotic testing of discrete distributions is faster using interactive mechanisms // Thomas Berrett (CREST, ENSAE, Institut Polytechnique de Paris) · Cristina Butucea (CREST, ENSAE, Institut Polytechnique de Paris)
- Modeling Shared responses in Neuroimaging Studies through MultiView ICA // Hugo Richard (INRIA) · Luigi Gresele (MPI for Intelligent Systems, Tübingen) · Aapo Hyvarinen (University of Helsinki) · Bertrand Thirion (INRIA) · Alexandre Gramfort (INRIA) · Pierre Ablin (INRIA)
- Neumann networks: differential programming for supervised learning with missing values (oral) // Marine Le Morvan (INRIA) · Julie Josse (CMAP / CNRS) · Thomas Moreau (Inria) · Erwan Scornet (Ecole Polytechnique) · Gael Varoquaux (Parietal Team, INRIA)
- Penalized Langevin dynamics with vanishing penalty for smooth and log-concave targets // Avetik Karagulyan (Center for Research in Economics and Statistics / ENSAE / IPP) · Arnak Dalalyan (ENSAE ParisTech)
- PEP: Parameter Ensembling by Perturbation // Alireza Mehrtash (University of British Columbia) · Purang Abolmaesumi (UBC) · Polina Golland (Massachusetts Institute of Technology) · Tina Kapur (Brigham and Women's Hospital) · Demian Wassermann (Inria) · William Wells (Harvard Medical School)
- Projection Robust Wasserstein Distance and Riemannian Optimization // Tianyi Lin (UC Berkeley) · Chenyou Fan (The Chinese University of Hong Kong, Shenzhen) · Nhat Ho (University of Texas at Austin) · Marco Cuturi (Google Brain & CREST - ENSAE) · Michael Jordan (UC Berkeley)
- Quantitative Propagation of Chaos for SGD in Wide Neural Networks // Valentin De Bortoli (ENS Paris-Saclay) · Alain Durmus (ENS Paris Saclay) · Xavier Fontaine (ENS Paris-Saclay) · Umut Simsekli (Institut Polytechnique de Paris / University of Oxford)
- Quantized Variational Inference // Amir DIB (Paris-Saclay University, ENS Paris-Saclay)
- Random Walk Graph Neural Networks // Giannis Nikolentzos (Athens University of Economics and Business) · Michalis Vazirgiannis (École Polytechnique)
- Relative gradient optimization of the Jacobian term in unsupervised deep learning // Luigi Gresele (MPI for Intelligent Systems, Tübingen) · Giancarlo Fissore (Inria) · Adrián Javaloy Bornás (Max Planck Institute for Intelligent Systems) · Bernhard Schölkopf (MPI for Intelligent Systems) · Aapo Hyvarinen (University of Helsinki)
- Robustness of Community Detection to Random Geometric Perturbations // Sandrine Peche (LPSM, Université Paris Diderot) · Vianney Perchet (ENSAE & Criteo AI Lab)
- Smooth And Consistent Probabilistic Regression Trees // Sami Alkhoury (University Grenoble Alpes) · Emilie Devijver (CNRS - UGA) · Marianne Clausel (IECL) · Myriam Tami (Université Paris-Saclay) · Eric Gaussier (Université Joseph Fourier, Grenoble) · georges Oppenheim (Private)
- Solver-in-the-Loop: Learning from Differentiable Physics to Interact with Iterative PDE-Solvers // Kiwon Um (Telecom Paris, IP Paris) · Yun (Raymond) Fei (Columbia University) · Philipp Holl (Technical University of Munich) · Robert Brand (Technical University of Munich) · Nils Thuerey (Technical University of Munich)
- Statistical and Topological Properties of Sliced Probability Divergences // Kimia Nadjahi (Télécom ParisTech) · Alain Durmus (ENS Paris Saclay) · Lénaïc Chizat (CNRS) · Soheil Kolouri (HRL Laboratories LLC) · Shahin Shahrampour (Texas A&M University) · Umut Simsekli (Institut Polytechnique de Paris/ University of Oxford)
- Statistical control for spatio-temporal MEG/EEG source imaging with desparsified mutli-task Lasso // Jerome-Alexis Chevalier (Inria Saclay Île-de-France) · Joseph Salmon (Université de Montpellier) · Alexandre Gramfort (INRIA) · Bertrand Thirion (INRIA)
- Statistical Efficiency of Thompson Sampling for Combinatorial Semi-Bandits // Pierre Perrault (INRIA - ENS Paris Saclay) · Etienne Boursier (ENS Paris Saclay) · Michal Valko (DeepMind) · Vianney Perchet (ENSAE & Criteo AI Lab)
- Towards Better Generalization of Adaptive Gradient Methods // Yingxue Zhou (University of Minnesota) · Belhal Karimi (Ecole Polytechnique) · Jinxing Yu (Baidu Research) · Zhiqiang Xu (Baidu Inc.) · Ping Li (Baidu Research USA)
- Weakly Supervised Deep Functional Maps for Shape Matching // Abhishek Sharma (Ecole Polytechnique) · Maks Ovsjanikov (Ecole polytechnique)
En savoir plus
Aller plus loin
Chiffre
9454
Texte
papiers soumis
Chiffre
1900
Texte
papiers acceptés
Chiffre
38
Texte
font partie de l'écosystème DATAIA
Actualités sur le même thème