The Palaisien Seminar
Date de tri

« Le Séminaire Palaisien » | Solenne Gaucher and Nicolas Vayatis on machine learning and statistics

Bandeau image

« Le Séminaire Palaisien » | Solenne Gaucher and Nicolas Vayatis on machine learning and statistics

Lieu de l'événement
Date de l'événement (intitulé)
6 April 2021 - 16.00
Le Séminaire Palaisien gathers, every first Tuesday of the month, the vast research community of Saclay around statistics and machine learning.
Corps de texte

Each seminar session is divided into 2 scientific presentations of 40 minutes each: 30 minutes of presentation and 10 minutes of questions.

Solenne Gaucher (Université Paris-Saclay) and Nicolas Vayatis (ENS Paris-Saclay) will lead the session of April 2021.

Nom de l'accordéon
« Continuum-armed bandits: from the classical setting to the finite setting » - Solenne Gaucher
Texte dans l'accordéon

Bandits are used to model the following sequential decision problem : at each time step, an agent takes an action and receives a reward drawn i.i.d. from a distribution depending on the action she has selected. Her aim is to maximize her cumulative reward. In this talk, we start by introducing the continuum-armed bandit, and present classical algorithms and results. In this setting, actions are indexed by covariates in a continuous set. The expected reward for taking an action is modeled as an (unknown) function of the covariate describing this action. In a second time, we focus on the finite continuum-armed bandit setting, where the set of actions is finite, and each action can only be taken once.

Nom de l'accordéon
« Can Machine Learning predict Human Behavior? » - Nicolas Vayatis
Texte dans l'accordéon

Behavioral neurosciences are about to undergo a major shift due to a) the dissemination of wearable and ambient sensors in routine clinical assessment or in complex Human-Machine interaction, b) the progressive abandonment of animal experimentation. This raises several issues in terms of observational data, but also questions how Machine Learning techniques may contribute to the data-driven quantification and prediction of Human behavior. In this talk, I will introduce the topic of Machine Learning applications to behavioral neurosciences. I will also give an overview of recent works and questions for the future of Machine Learning research in this field.